设曲面S是z=½(x²+y²)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:59:15
再问:再问:请问为什么这样不行呢再答:不能直接将立体方程代入,那是曲面积分的算法因为三重积分的被积函数是建基于整个立体空间,而不只是外面的曲面方程这点你要记住了,以后学曲面积分时又会遇上同样问题了,所
曲面x^2+y^2+z^2=1与曲面y^2=2x的交线在xoz平面的投影曲线是(圆)
只需看法向量其中一个坐标的正负与曲面的内外是否一致根据曲面局部微分性质来做如果已知某点的向量判断是否是内外可以在该点求U,v向的切矢(偏导
将z对x的偏导记为dz/dx,(不规范,请勿参照)(e^x)-xyz=0两边对x求导数(e^x)'-(xyz)'=0e^x-x'yz-xy(dz/dx)=0e^x-yz-xy(dz/dx)=0xy(d
对曲面在第一象限内的部分,设x=a*r*costy=b*r*sint则z=c*sqrt(1-r^2)代入计算得到8*pi/3*abc*(1/a^2+1/b^2+1/c^2)再问:麻烦您写一下具体步骤呗
对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y
用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3
ipanda20092009-12-2710:33:59你就降低一维ipanda20092009-12-2710:34:09想象一下,y=f(x)ipanda20092009-12-2710:34:3
1e^z=xyze^zz'x=yz+xyz'xz'x=yz/(xy-e^z)=yz/(xy-xyz)=z/(x-xz)类似z'y=z/(y-yz)dz=[z/(x-xz)]dx+[z/(y-yz)]d
好好学高数,这是以后学专业课的基础,不要网上问了,有人回答答案也是似是而非的,不会了问学霸同学,或者老师答疑的时候去问问再问:TT身边没有学霸。。课已经讲完了唉再答:x²+y²=9
这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆
∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y
面积元素ds=2/(4-x^2-y^2)^1/2dxdy∫∫(x^2+y^2+z^2)dS=x^2+y^2+z^2)dS=∫∫4.2/(4-x^2-y^2)^1/2dxdy极坐标换元:∫∫(x^2+y
不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被
根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π
先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0
绕x轴旋转,则旋转面上的每一个点(x,y,z)满足距z轴的距离为x^2+y^2的条件,满足该条件的点都在这个曲面上.你可以任意从该线上选一个点绕z轴旋转,从点推面
记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17