设有波函数y=0.01cos(0.01πx-2πt)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:04:37
y=2cos(x+π4)cos(x−π4)+3sin2x=2(12cos2x−12sin2x)+3sin2x=cos2x+3sin2x=2sin(2x+π6)∴函数y=2cos(x+π4)cos(x−
再问:看不清,可以写出来吗?再答:
∵y=cos(x2-π3)的单调递减区间即为y=-cos(x2-π3)的单调递增区间,由2kπ≤x2-π3≤2kπ+π(k∈Z)得:2π3+4kπ≤x≤8π3+4kπ(k∈Z),∴函数y=-cos(x
y=12[1+cos2(x-π12]+12[1-cos2(x+π12]-1=12[cos(2x-π6)-cos(2x+π6)]=sinπ6•sinx=12sinx.T=π.故答案为:π.
把函数y=cos(x+43π)的图象向右平移φ个单位,可得函数y=cos(x-φ+43π)的图象;再根据所得图象正好关于y轴对称,可得-φ+43π=kπ,k∈z,即φ=-kπ+4π3,故φ的最小正值为
解析:记P(cosθ,sinθ),A(-3,1)则y=kPA,P点的轨迹是圆心为原点的单位圆,如右图:当直线PA与圆相切时,设切线方程为y-1=k(x+3),即kx-y+3k+1=0,由|3k+1|k
由三角函数的周期公式,可得T=2π25=5π,即函数的最小正周期为5π故答案为:5π
∵y=cos(π6−x)=cos(x-π6),由2kπ-π≤x-π6≤2kπ,k∈Z得:2kπ-56π≤x≤2kπ+π6,k∈Z.∴原函数的单调递增区间为[2kπ-56π,2kπ+π6](k∈Z).故
因为y=cos(3π2−x)cos(3π−x),所以结合诱导公式可得:y=tanx,所以根据正切函数的周期公式T=πω可得函数y=cos(3π2−x)cos(3π−x)的周期为:π.故答案为:π.
由2kπ-π≤12x-π3≤2kπ,k∈Z,解得4kπ-43π≤x≤4kπ+2π3,k∈Z,因为x∈[-2π,2π],所以函数的单调增区间为:(-43π,23π);故答案为:(-43π,23π).
y=cos^2x-sinx=1-sin²x-sinx=-(sinx+1/2)²+5/4所以当sinx=-1/2时,有最大值=5/4当sinx=1时,有最小值=1-1-1=-1值域为
是求两个函数(1)y=√(sinx)(2)y=√(cosx)的定义域吧还是求(3)y=√sin(cosx)定义域(1)要使y=√(sinx)有意义,须令sinx≥0所以2kπ≤x≤π+2kπ,k∈z即
周期是2兀是偶函数,因为sinx的值一定是在[-1,1]上,所以cos随之变化.
画出图像即可令t=sinx所以t的范围[-1,1]y=cost[-1,1]在-π/2到π/x之间所以最大值在t=0处取得为1,最小值在t=-1或1处取得为cos1所以它的值域为1>=cos(sinx)
y=12cos2x+32sinxcosx+1=14cos2x+34sin2x+54=12sin(2x+π6)+54,y取最大值,只需2x+π6=π2+2kπ(k∈Z),即x=kππ6(k∈Z),∴当函
y=sinx+cos(x−π6)=sinx+32cosx+12sinx=32sinx+32cosx=3sin(x+π6)所以函数的最大值为:3;最小值为:−3故答案为:3和−3
把函数y=cos(x+4π3)的图象向右平移θ(θ>0)个单位,所得的函数为y=cos(x+4π3−θ),它是偶函数,所以θ=π3+kπ,k∈Z.故答案为:π3.
函数y=cos2(x+π4)−sin2(x+π4)=cos2(x+π4)=-sin2x,∴T=2π2=π.故答案为π.
y=cos(2x-派/2)=sin2xA最小正周期为派的奇函数
由x-π3∈[2kπ,2kπ+π],可得x∈[π3+2kπ , 4π3+2kπ](k∈Z),∴函数y=cos(x-π3)的单调递减区间是[π3+2kπ , 4π