设正项级数 ∞ n=1 un, ∞ n=1 vn都收敛证明1 n√Un收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:06:36
发散.∑(n=1,∞)(un+10)=∑(n=1,∞)un+∑(n=1,∞)10,后者无穷大
发散再问:我知道答案,你能不能帮我证明一下啊?再答:这个是书上的定理啊。再问:对呀,书上有这个定理,但有一题让我们证明,书上证了N是∑(n=N→∞)Un=(n-N)Un当lim(n→∞)Un=0时收敛
由于lim((1+n)/(1+n²))/(1/n)=lim(n²+n)/(1+n²)=1所以此级数和1/n有相同敛散性1/n发散,所以此级数发散
Un→0,则级数收敛;反之未必,没有人规定数列极限必须是0.比如:1,1+1/1,1+1/2,1+1/3……收敛到1.再问:若Un=1/n,n→∞时,它也是趋于0的。可是它不收敛吧?再答:数列本身是收
很简单Sn=u1+u2+.+un=1-1/(n+1)!(两两相消即可得)
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
∵sn=(u(n)-u(n-1))+(u(n-1)-u(n-2))+.+(u(1)-u(0))=u(n)-u(0)∴s=limsn=a-u(0)再问:结果为u1-a再答:结果u1-a印错了
你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛
级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛
若∑(n=1)∞Un收敛,那么lim(n→∞)Sn存在,设为S那么lim(n→∞)S(n-1)=Slim(n→∞)un=lim(n→∞)[Sn-S(n-1)]=lim(n→∞)Sn-lim(n→∞)S
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676
达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:
(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?
比值判别法lim[u(n+1)/u(n)]=lim[(n+1)/2^(n+1)/(n/2^n)]=1/2<1所以,级数收敛.
∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1
这个确实错的.如Un=1/(n*lnn),虽然满足条件,但级数发散于ln(lnn).
∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-
因为级数∞n=1(−1)nlnn+1n为交错级数,un=lnn+1n.由于,un+1−un=lnn+2n+1−lnn+1n=ln(n+2)n(n+1)2=lnn2+2nn2+2n+1<0所以数列{un
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
S1=U1=1^3=1Un=Sn-S(n-1)=n^3-(n-1)^3=3n^2-3n+1