设随机变量x x落入区间(1,3)的概率最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:17:03
max{X,Y}≤1实际上就等价于X和Y都小于等于1,而随机变量X与Y互相独立,于是P(max{X,Y}≤1)=P(X≤1)*P(Y≤1)而X和Y均服从区间[0,3]上的均匀分布故P(X≤1)=P(Y
(1)f(x)=1/(b-a)=1/4P{-0.5
我把解答写在图片里面,请参考图片
首先X是连续型随机变量,取任何一个定值的概率都是0,因此X=0和X=1的概率是0,也就没有0和2了.其次,均匀分布的随机变量在某区间取值的概率正比于该区间长度,且总概率为1,因为X分布在[-1,2],
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
f(x)=1/3-2
随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
详细过程点下图查看
由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0
由已知,f(x)=1/2,(-1再问:x��ȡֵ��ΧΪʲô�ǣ�-1,1������[-1,1]?���y��ȡֵ��ΧΪʲô��[-1,3)����ȡ��ô��再答:��Щ����ϸ�����⣬�
X落入区间(1,2)内的概率P=积分(1-->2)λe^(-λx)dx=e^(-λ)-e^(-2λ)概率达到最大-->dP/dλ=0-->λ=ln2
由方差的性质:D(Y)=D(2X+1)=4DX,而均匀分布的方差:DX=(3-1)^2/12=4/12=1/3故:D(Y)=4/3这个题是方差的性质与均匀分布的方差的应用,要熟练掌握.
你记住均匀分布期望、方差公式就很快了,均匀分布U(a,b)的期望是(a+b)/2,方差是(b-a)^2/12,(最好记住,做题快)于是a+b=6,(b-a)^2/12=1/3,于是a+b=6,b-a=
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
U(-1,2)概率密度f(x)=1/3,2>x>-10,其他P(Y=1)=P(X>0)=∫(下限0到上限正无穷大)f(x)dx=∫(下限0到上限2)1/3dx=2/3
若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X
x落入(0,1)的概率=F(1)-F(0)=1+1/4-1=1/4