设随机变量XY相互独立,分别满足参数1与4的指数分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:51:56
设随机变量XY相互独立,分别满足参数1与4的指数分布
设随机变量X,Y相互独立,它们的概率密度分别为:

可以利用指数分布的特征,得到D(X)=1/4从原始理论推导的话,D(X)算起来有些麻烦E(X)=∫(0~无穷)x2e^(-2x)dx=1/2E(Y)=∫(0~1/4)4xdx=2x²](0~

设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X-2Y的方差是(  )

解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.

设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

考研 设随机变量X1,X2,X3相互独立

数学期望具有线性性,有:(1)E(X+Y)=EX+EY.并且不必要求X,Y独立(2)E(aX+b)=aEX+b根据X1,X2,X3的分布,有E(X1)=4*1/2=2E(X2)=6*1/3=2E(X3

如图 设xy 是两个相互独立的随机变量 求得是D(x+y)

如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n

设随机变量X ,Y分别服从(0-1)分布,证明:X,Y相互独立等价于X,Y不相关

设X,Y的分布律分别为X01Y011-pp1-qq(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)

设随机变量X和Y相互独立,其概率分布分别为: 如图

(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4

设随机变量X与Y相互独立其概率密度分别为 Px(x)={2x,0

因为随机变量X与Y相互独立所以X和Y的联合概率密度P(x,y)=Px(x)Py(y)P(x,y)={2xe^(-y)范围是0

3.设随机变量和随机变量相互独立,概率分布分别为

首先XY是两个事件,X=Y是不可能成立的P(X=Y)指的是X和Y取同样的值得概率所以P(X=Y)=1/2*1/2+1/2*1/2=1/2

设随机变量X~N(-1 4),N(-2 9) ,且XY相互独立,则x-y~( )

正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)

设随机变量XY相互独立X为标准正态分布Y为【0.1】上均匀分布求P{X>Y}

所给题中ξ服从标准正态分布,均值miu为0,方差sigma为1,根据正态分布性质有:P{1

设随机变量X与Y相互独立,证明:D(XY)〉=D(X)D(Y).

知道x^2与y^2相互独立.D(xy)-D(x)D(y)=E(x^2)E(y)^2+E(y^2)E(x)^2-E(x)^2E(y)^2-E(xy)^2=D(x)E(y)^2+D(y)E(x)^2>=0

设随机变量X,Y相互独立,且服从[0,]上的均匀分布,求XY的概率密度

求导就得书上的答案.再问:不好意思时间过去有点长忘记题目了,不过你的那个p(x

设随机变量XY相互独立,且均服从正太分布N(0,1)则概率P(XY>0)为多少

X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.5P(XY>0)=P(X>0,Y>0)+P(X0)+P(X再问:X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.

设随机变量XY相互独立,都服从(0.1)的均匀分布,求z=x+y的密度函数.

fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f

设随机变量X与Y相互独立,且其概率密度分别为

fx(x)=(1)2x0<x<1\x0d(2)0其他\x0dfy(y)=(1)e的-y次方y0\x0d(2)0y≤0,\x0d则X与Y的联合概率密度f(x,y)=\x0de的-y次方打不出