设随机变量X~E(λ),且x落入(1,2)区间内的概率达到最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:20:19
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
1/(PI)^O.5
设随机变量X,Y,Z相互独立,且E(X)=5,E(Y)=11则数学期望E(2X+3Y+1)=2E(X)+3E(Y)+1=10+33+1=44如果不懂,祝学习愉快!
X服从均匀分布,f(x)=1/3,0≤x≤3Y服从指数分布,f(y)=1/3*e^(-y/3),y≥0X,Y相互独立,f(x,y)=f(x)f(y)=1/9*e^(-y/3),0≤x≤3,y≥0再问:
Z的分布函数为F(z)=∫(0到z/2)f1(y)dy∫(0到z-2y)f2(x)dx=∫(0到z/2)(1-exp(2y-z))f1(y)dy=∫(0到z/2)2*(exp(-2y)-exp(-z)
E[(X+Y)^2]=D(X+y)+[E(x+y)]^2,D(X+y)=D(x)+D(y)=2.E(x+y)=E(x)+E(y)=0;所以E[(X+Y)^2]=2不对么?
E[(X-1)(X-2)]=E[X^2-3X+2]=EX^2-3EX+2EX=λDX=λEX^2=DX+(EX)^2=λ+λ^2即λ^2-2λ+2=1得λ=1
E[(X+Y)^2]=E[(X-1+Y-1+2)^2]=E(X-1)^2+E(Y-1)^2+4+2*E(X-1)(Y-1)+2*2*E(X-1)+2*2*E(Y-1)=D(X)+D(Y)+4+0+0+
这个不需要证明对任意的随机变量的分布经过标准化处理后都服从标准正态分布N(0,1)再问:那个原题就是这样.....应该也有个推导过程吧?再答:E(x*)=E[x-E(x)/√D(x)]=[E(x)-E
因为X服从泊松分布,所以DX=EX=5,则D(X–1)=DX=5
x服从λ=1/2的指数分布可以得出f(x)=(1/2)e^(-x/2)由Y=2X-1可以推出f(y)=(1/4)e^(-(y+1)/4)则E(Y^2)=e^(-1/4)∫(y^2)f(y)dy积分区域
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
∵D(X)=E(X^2)-E(X)^2∴E(X)^2=8-4=4E(X)=2ps:多记公式对统计学习有很重要的帮助.
X服从泊松分布P(λ)所以P{X=1}=P{X=2}λe^(-λ)=λ^2e^(-λ)/2λ=2所以EX=λ=2
λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.
由题目可知X服从μ=5,σ=2的正态分布,所以,有(X-5)/2~N(0,1).令P{(x-5)/2
解析E(X)=-3E(Y)=3.6E(X+Y)=-3+3.6=0.6E(X+Y)²=0.36
你记住均匀分布期望、方差公式就很快了,均匀分布U(a,b)的期望是(a+b)/2,方差是(b-a)^2/12,(最好记住,做题快)于是a+b=6,(b-a)^2/12=1/3,于是a+b=6,b-a=
E(xy)=E(x)×E(y)=1×3=3
E((X-1)(X-2))=E(X2)-3E(X)+2=1E(X)=∝K=0KλKK!e−λ=λE(X2)=λ2+λλ2+λ-3λ+2=1则λ=1D(X)=λ=1