设随机变量X和Y的分布律分别为,已知P(XY=0)=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:47:24
X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料
解,由题意知X和Y独立,且D(X)=4,D(Y)=9,由方差公式知:D(3X-2Y)=9D(X)+4D(Y),可得:D(3X-2Y)=9D(X)+4D(Y)=9×4+4×2=44,故选:D.
Z的取值范围01)3xdx∫(x-z-->x)前一积分结果为z^3,后一积分结果为(3/2)z-(3/2)z^3故F(z)=(3/2)z-(1/2)z^3求导即得密度函数f(z)=dF(z)/dz=(
P(Z=0)=P(X=0){P(Y=0)+P(Y=-1)}=0.3P(Z=1)=1-P(Z=0)=0.7如有意见,欢迎讨论,共同学习;如有帮助,
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4
由性质得:F(+∞,+∞)=1,则A(B+arctanx/2)(C+arctanY/3)=A(B+π/2)(C+π/3)F(-∞,+∞)=0A(B+arctanx/2)(C+arctanY/3)=A(
Z=X+Y=1+2=3,P(Z=X+Y)=0
P(A)=P(X>a)=1-a^3/8P(A∪B)=P(A)+P(B)-P(AB)=2P(A)-P(A)^2=3/4P(A)=1/2a^3=4a=4^(1/3)
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
设随机变量X的分布律为X-2-1012P1/51/61/51/1511/30于是,Y=X^2的分布律为X^2014P1/57/3017/30Y的分布函数为F(y)=P{Y
若存在F(x)=0.4F1(x)+kF2(x),则在区间内存在一点,F(x)=F1(x)=F2(x),得F1(x)=F2(x)——①;F1(x)=0.4F1(x)+kF2(x)——②;解得:0.6F1
首先,由于X,Y同分布且为连续型的随机变量,所以有P(A)=P{X>a}=1-P(B).而P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=1-P(B){1-P(B)
由于概率函数连续,所以Asin(π/2)=1,即A=1对F(X)求导得密度函数f(x)=cosx,0≤x≤π/2,其他为0所以E(X)=∫(0,π/2)xcosxdx=(π/2)-1
切比雪夫不等式:设X的方差存在,对任意ε>0P{|X-EX|>=ε}
E(x)*E(Y^2)=E(x)*((E(Y))^2+D(y))再问:能不能详细点呀再答:你前面都做出来啦?而E(xy^2)=e(x)*e(y^2),求出e(x)和E(y^2)啊再问:知道啦,谢谢啦,
P(X=x|X+Y=z)=P(X=x,Y=z-x)/P(X+Y=z)=(1-p)^(x-1)p(1-p)^(z-x-1)p/P(X+Y=z)再问:没有错,但是没有写完啊……P(X+Y=z)=?(考虑卷
再问:能不能具体解释一下再答:再问:第二行和第三行我不是很懂?为什么是1/4?再答:P(X=0,Y=-1)+P(X=-1,Y=-1)+P(X=1,Y=-1)=P(Y=-1)=1/4但是P(X=-1,Y
.这题比较简单啊,分布律就是做个表,把值和概率对应的填进去就可以了.至于边缘分布律,以x为例,x取0的概率是1/6,取-1概率是1/3+1/12=5/12,取2的概率就是5/12,那么做一个表,第一行
P(X=0)=0.6^3=0.216,此时Y=0P(X=1)=3*0.4*0.6^2=0.432,此时Y=-1P(X=2)=3*0.4^2*0.6=0.288,此时Y=0P(X=3)=0.4^3=0.