证必有秩数为n-r的n阶矩阵B,使得BA=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:54:49
依题意r(A)=r
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
我们一步一步来.首先对于实数域上的列向量X,有X'X≥0,且等号成立当且仅当X=0.由这一点我们可以证明,对实矩阵B,有B'B的秩R(B'B)=B的秩R(B).方法是考虑两个线性方程组BX=0与B'B
这是什么结论?A,B不同型,不能相加再问:那请问r(A)
小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交
将A进行列分块为(a1,a2,a3,...ap),于是AB=b11a1+b21a2+...bp1ap+b12a1+b22a2+...+...+bpnap所以AB可以由A的p个向量组线性线性表示,即r(
(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)再问:谢谢!!!
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
若r(A)=n,注意Ax=0的充分必要条件是x=0.则对任意的非零x,有Ax非零,于是x^TA^TAx=(Ax)^T(Ax)>0,故A^TA正定.反之,设A^TA正定.若r(A)0,所以B^tAB为正
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
请参看李永乐线性代数讲义关于经典等式r(AB)=0等价于r(a)+r(b)
注意到AC的行列数与A相同,故A右乘C实际上就是对A进行初等列变换,故r=r1
考察I00AB利用初等变换I00ABI-B0ABI-BA0再由秩的定义容易说明它的秩不小于0-BA0的秩即可.
1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R
证明:设α为k维列向量,是CX=0的解,即有Cα=0.则ABα=0.(*)因为r(A)=n所以AX=0只有零解.由(*)知Bα=0.(**)又因为r(B)=k所以BX=0只有零解.由(**)知α=0.
这是个错误结论试想,B是零矩阵,怎么会有R(AB)=R(A)!可逆矩阵才不改变乘积矩阵的秩