证明:圆心为坐标原点,半径等于1的圆的方程是x^2 y^2=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:42:54
一个圆的圆心为坐标原点,半径为2,这个园的方程x+y=2(1)从这个圆上任意一点向x轴作垂线段pb,则线段pb的中点2*y1=y代入(1)它的轨迹是个长轴(在x轴)为2,短轴(在y轴)为1的椭圆.
答案是正弦函数具体为什么我不懂r*sina其中r半径a是op与x轴的夹角
分别计算A、B、C三点到圆心(即原点)的距离|OA|=根号下(3^2+4^2)=5,在圆上|OB|=根号下(3^2+3^2)=根号185,在圆外
x^2+y^2=9.圆的标准方程为(x-a)^2+(y-b)^2=r^2其中(a,b)为圆心,r为半径
根据两圆圆心坐标可知,圆心距=|a-0|=|a|,因为两圆内含时,圆心距<5-3,即|a|<2,解得-2<a<2.故答案为-2<a<2.
依题意,得O(0,0),|OA|=(0+3)2+(0−1)2=4=2,∴R-r=3-1=2=|OA|,∴两圆内切.
(2)设M(x0,y0),P'(3,y1),Q'(3,y2),易知,P(-1,0),Q(1,0).由M在圆上有:x0^2+y0^2=1,由P、M、P'三点共线,y1/4=y0/(x0+1),所以,y1
因为以原点为圆心所以设圆方程(x-0)^2+(y-0)^2=r^2又r=1所以以原点为圆心,半径为1的圆的方程是x^2+y^2=1
y=3sinax=3cosa
没有问题的--这是一题安徽高考题,刚好下午物理课我做了,高考题答案肯定是不会错的,不然当年的考生不是一个个撞墙去了最后一题,粒子在磁场中运动的时间是由t/T=α/2π(α为在磁场中运动圆弧所对的圆心角
如图,设∠COB=α,OB=2/cosα.OA=2/sinα.AB=OA×OB/OC=4/[2sinαcosα]=4/sin2α.当α=45°时,AB有最小值4.
(1)需证明直线AB和OC的斜率相乘为-1.直线AB斜率为-1,直线oc:y=x,斜率为1,所以相乘为-1,所以两直线垂直.(2)P在AB上,设P(X,-X+2),A(2,0)PA=根号[(X-2)^
(1)∵PQ是⊙O的切线∴OP⊥OQ∵OP=2,OQ=1∴PQ=3∴∠QOP=60°(2)由(1)条件解得弧BQ=π/12∴v=π/12∴弧BC=(5+1)v=π/2,此时Q点坐标为(0,-1)Kpq
这题我做过.由(1)得点Q运动1秒时经过的弧长所对的圆心角为30°,若Q照(1)中的方向和速度继续运动,那么再过5秒,则Q点落在圆O与y轴负半轴上的交点处(图自己画吧).设直线PQ与圆O的另外一个交点
根据题意得点A到点O的距离是3+1=2,即两圆的圆心距是2,所以半径与圆心距的关系是3-1=2,根据圆心距与半径之间的数量关系可知⊙O1与⊙O2的位置关系是内切.故选B.
难道这道题有玄机,怎么看O都在P外再问:确定?
(1)设AO=a,BO=b,AB=c则有:a^2+b^2=c^2因为,a^2+b^2≥2ab,即c^2≥2ab有最小值仅当a=b时成立此时,AB=2r=a√2(r为圆O的半径)(2)当P为圆O与y=x
上图黄色区域即为所求,面积为 47-6π/12解题思路:先如图取一个满足条件的圆,然后再找临界状况.第一种临界:与三边相切,即三角形内三条蓝色的直线第二种临界:圆只与三角形的一个角相交,有两
设p(x,Y)为圆上任意一点,过p分别向x轴、y轴作垂线pm,pn.op^=pn^+pm^,即x^+y^=25.把x=-2√5,y=2代入方程x^+y^=25不成立,所以m2(-2√5,2)不在圆上