证明:对任意实矩阵A,有r(ATA)=r(AAT)=r(A)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:49:34
因A'A对称,可以对角化为Pdiag(a1,...,an)P',P是正交阵取a>|ai|,i=1,2,...,n则aIn+A'A=Pdiag(a+a1,...,a+an)P',特征值都是正数,从而正定
必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t
设ε1ε2ε3.εn是n维基本向量组.即每个εi=(0,0,...,0,1,0,...,0)^T,1在第i个位置.由已知条件,Aεi=0.所以A(ε1,ε2,ε3,.,εn)=O.即有AEn=O.所以
如果你知道奇异值分解,那么结论显然.如果不知道就这样做:若r(A)=k,那么可以用Gauss消去法把A消成梯阵,即CA=U,其中C是行初等变换的乘积,U仅有前k行非零且线性无关.于是CAA^TC^T=
A为正定则特征值全为正A=P*[v1..*P^-1vn]A^k=P*[v1^k..*P^-1vn^k]v1^k..vn^k也是正数即A^k的特征值全为正所以A^k也是正定矩阵
方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX
证明:因为实对称矩阵总可对角化所以存在可逆矩阵P满足A=Pdiag(a1,...,an)P^-1由已知A非零,所以r(A)=r(diag(a1,...,an))>0--即有A的非零特征值的个数等于A的
设A的特征值为λ1,λ2,...,λn,则tE+A的特征值为t+λ1,t+λ2,...,t+λn,显然,无论λi为多少.总存在足够大的t使t+λi>0,即tE+A为正定矩阵.
(α,β)=β^Tα,(Aα,Aβ)=β^TA^TAα 显然当A是正交阵的时候(Aα,Aβ)=(α,β) 反过来,令M=A^TA,M是一个对称阵 取α=β=e_i得到M(i,i)=1,这里e_i
根据转置矩阵的性质(AB)'=B'A'以及(A')'=A有(A'A)'=A'(A')'=A'A,所以A'A是对称矩阵.同理(AA')'=(A')'A'=AA'所以AA'也是对称矩阵.
Ak是A的k次方?A的特征值是λ则A^K的特征值是λ^k(这个是常用结论)A是正定矩阵则A所有特征值>0λ^k>0所以A^K的特征值也全都大于0所以A^k是正定矩阵
对的对的定理:两个矩阵乘积的不大于每一因子的秩,特别当有一个因子是可逆矩阵时,乘积的秩=另一个因子的秩.
(A+A')'=A'+A=A+A',所以A+A'是对称的.(A-A')'=A'-A=-(A-A'),所以A-A'是反对称的.
因为(AA^T)^T=(A^T)^TA^T=AA^T所以AA^T是对称矩阵同理,因为(A^TA)^T=A^T(A^T)^T=A^TA所以A^TA是对称矩阵.性质:(AB)^T=B^TA^T还有什么问题
...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基