证明n 1个n维向量一定线性相关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:16:02
所以b可以由向量组表示,即(a1,a2,.an,b)线性相关,所以与假设矛盾!所以N+1个N维向量一定线性相关.
这个证明不对,除非你能够证明出(1)是b的唯一表示法,否则这样是不行的.充分性:取n个线性无关的n维向量b1,b2,..,bn,由必要性知任一n维向量均可由b1,b2,...,bn线性表示,也就是说a
个s维向量构成的矩阵的秩再问:那怎么证明r个s维向量构成的矩阵的秩
结论:1.若齐次线性方程组Ax=0中A的行数小于列数,即方程的个数小于未知量的个数则方程组有非零解.2.向量组a1,...,as线性相关齐次线性方程组(a1,...,as)X=0有非零解.因为n+1个
可以.一个向量b能否由一个向量组a1,...,as线性表示等价于线性方程组x1a1+...+xsas=b是否有解即(a1,...,as)x=b是否有解.n维向量空间里n个线性无关的向量a1,...,a
当然不矛盾.因为B,a1,a2,a3线性相关并不等价于B一定可以由a1,a2,a3线性表示,等价命题为这四个向量,至少某一个向量可以由其他三个线性表示所以你的定义理解有误至于这题的解法,可以行变换矩阵
因为向量组的秩最多=n小于向量的个数所以必线性相关.再问:问题是多于不是少于呀?再答:秩=n向量个数多于n所以因为向量组的秩
即是要证明:向量的个数大于向量的维数时,向量组线性相关证明:设α1,...,αm是n维列向量令A=(α1,...,αm).则r(A)≤min{m,n}[矩阵的秩不超过它的行数和列数]因为m>n所以r(
用反证法证明.设A=﹙α1,α2,……αn﹚是n阶降秩矩阵,αj=﹙a1j,a2j,……anj﹚'是第j列列向量.设r﹙A﹚=r<n则存在A的r阶子式D≠0,而阶大于r的子式全都等于零.为了方便,可设
把n+1个n维列向量排成一个n×(n+1)型矩阵.这个矩阵的秩一定是不大于n的.所以这n+1向量组的秩不大于n,所以线性相关.
知识点:a1,a2,a3……am线性相关充分必要条件是齐次线性方程组x1a1+x2a2+...+xmam=0有非零解.即(a1,a2,...,am)X=0有非零解.因为m>n,所以r(a1,a2,..
用反证法证明.设A=﹙α1,α2,……αn﹚是n阶降秩矩阵,αj=﹙a1j,a2j,……anj﹚'是第j列列向量.设r﹙A﹚=r<n则存在A的r阶子式D≠0,而阶大于r的子式全都等于零.为了方便,可设
以n+1个n维向量作为列向量构成的矩阵的秩不超过n(矩阵的秩不超过其行数和列数中小的那个)所以r(A)
A线性相关.个数大于维数必相关.因为此时对应的齐次线性方程组的未知量个数大于方程的个数,所以有非零解故向量组线性相关.再问:齐次线性方程组何时有非零解?再答:齐次线性方程组何时有非零解系数矩阵的秩大于
是..可以用反证法证明
你把行列向量组搞混了定理中,A行满秩,A的行向量组线性无关但它的列向量组却不一定若
先说线性无关的情况吧,如果n个向量线性无关,说明有用的方程就有n个(也就是秩的值),这时,1、如果未知数的个数大于n(未知数个数多于方程个数),肯定就有无穷多组解;2、如果未知数个数等于n(n个未知数
(η,α1,……,αn)是一个n×(n+1)的矩阵,所以R(η,α1,……,αn)≤n所以,(η,α1,……,αn)必定线性相关.再问:好棒,谢谢
即是要证明:向量的个数大于向量的维数时,向量组线性相关证明:设α1,...,αm是n维列向量令A=(α1,...,αm).则r(A)≤min{m,n}[矩阵的秩不超过它的行数和列数]因为m>n所以r(