证明实对称矩阵A与B相似的必要条件是A与B合同

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:42:00
证明实对称矩阵A与B相似的必要条件是A与B合同
相似如何推出轶相等 矩阵A与矩阵B相似,如何证明矩阵A与矩阵B的轶相等?

A与B相似的意思是,存在一个可逆阵C,使得B=CAC逆而一个阵乘以一个可逆阵是不改秩的所以有R(B)=R(CAC逆)=R(A)证毕.

证明实对称矩阵与对角矩阵相似

求此矩阵的特征多项式|A-λE|比较麻烦.2-λ1/n1/n1/n……1/n1/n4-λ1/n1/n……1/n.1/n1/n1/n1/n……2n-λ先说明特征值不等于2k-1/n,k=1,2,...,

A、B为n阶实对称矩阵,且A与B有相同的特征值,问A、B相似吗?为什么?

相似的,实对称阵一定相似于对角阵,若A与B有相同特征值,则它们相同于同一个对角阵,所以A与B相似.经济数学团队帮你解答,请及时采纳.谢谢!

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

矩阵a与矩阵b相似,且a可逆,证明矩阵b可逆以及a^-1与b^-1相似

因为A,B相似所以存在可逆矩阵P使得P^-1AP=B由于A可逆,故B可逆(同阶可逆矩阵的乘积仍为可逆矩阵)且B^-1=(P^-1AP)^-1=P^-1A^-1(P^-1)^-1=P^-1A^-1P故A

求合同矩阵转换中的P已知A为实对称矩阵,B为对角矩阵,A与B合同但不相似,求可逆矩阵P,使P'AP=B.(P'为P的转置

构造分块矩阵AE同时,对矩阵用初等列变换(同时对上半块用相应的初等行变换)把上半块化为B最后化为BP则P即为所求.再问:对整个分块矩阵做初等列变换,而只对上半块做相应的初等行变换是吧?如果是这样的话,

证明实对称矩阵一定能够与对角矩阵相似

n阶实对称矩阵A算出特征根然后可以求出n个特征向量以n个特征向量为列向量的矩阵设为P则A=P∧P^(-1),其中∧为相似的对角矩阵,对角线上的值即为特征根.这是具体的求法,严格的证明需要用到矩阵二次型

证明:两个n级实对称矩阵A,B相似的充要条件是它们有相同的特征多项式

实对称矩阵一定可以相似对角化,并且相似于矩阵diag(λ1,λ2,…,λn),AB相似则AB分别相似于其特征值构成的对角矩阵,两对角矩阵相似=>其对角线上的元素

线性代数 相似矩阵证明:如果A与B相似,则A‘与B’相似

因为A与B相似,所以存在可逆矩阵P,满足P^(-1)AP=B等式两边转置,得P'A'[P^(-1)]'=B'.因为[P^(-1)]'=(P')^(-1)所以P'A'(P')^(-1)=B'令Q=(P'

如果A和B都是n阶是对称矩阵,并且有相同的特征多项式,证明AB相似.

由于A与B有相同的特征多项式,所以A与B有相同的特征根,不妨设λ1,λ2.λn为A与B的特征根,由于A与B均为实对称矩阵,则存在正交矩阵X和Y,使X^(-1)AX=【λ1λ2·····λn】(此为矩阵

设A,B均为n阶实对称矩阵,证明:A与B相似

因为A,B都是实对称矩阵,故他们都可以对角化.B他们有相同的特征值他们的特征多项式相同右边.

若A,B是实对称矩阵,则A与B有相同的特征值是A与B相似的充分必要条件.为什么?

相似矩阵有相同的特征值,这是定理反之,因为A,B是实对称矩阵,所以A可对角化,即A,B相似于由特征值构成的同一个对角矩阵,所以A,B相似.

n阶矩阵A和对角矩阵相似的充分条件是:A有n个不同的特征值和A是实对称矩阵.我想问:一般题目是证明n阶矩阵A和B相似,这

你的做法最多仅适用于A和B都可对角化的情况,如果B不可对角化你的做法就失效了即使A和B都可对角化,你还得额外证明它们的特征值完全相同(或者特征多项式相同)一般来讲要证明两个矩阵相似最好还是直接构造相似

设A,B均为n阶实对称矩阵,证明:A与B相似 A,B有相同的特征多项式

实对称矩阵一定可以相似对角化,并且相似于矩阵diag(λ1,λ2,…,λn),AB相似则AB分别相似于其特征值构成的对角矩阵,两对角矩阵相似=>其对角线上的元素相等,则AB的特征值相同,即AB具有相同

a是反对称矩阵 b实对称矩阵 证明a^2实对称矩阵

因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件

证明:对于实对称矩阵A,必有实对称矩阵B,使得A=B³.

做谱分解A=QΛQ^T然后取对角阵D使得D^3=ΛB=QDQ^T就满足条件再问:什么是谱分解啊?再问:什么是谱分解啊?再问:什么是谱分解啊?

设A为实对称矩阵,且A正交相似于B,证明B为实对称矩阵.

由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,

设矩阵A与B相似,证明A的倒置与B的倒置相似

A与B相似,则存在可逆矩阵P满足P^-1AP=B等式两边取转置得P^TA^T(P^-1)^T=B^T由于(P^-1)^T=(P^T)^-1,所以有P^TA^T(P^T)^-1=B^T令Q=(P^T)^