证明方程 在区间(-1,0)内有且只有一个实根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:36:32
f(x)=x^3-3x-1,f(-1)=-1-3*(-1)-1=1>0,f(0)=-1
证明:令f(x)=x^3-3x+1则f'(x)=3x²-3∵0<x<1,∴f'(x)<0即f(x)在(0,1)上是减函数而f(0)=1>0,f(1)=-1<0由零点的性质可知f(x)=0在(
记f(x)=x^4-4x+2.显然f(x)连续.f(1)=-10.由连续函数的介值定理,f(x)==0在区间(1,2)内至少有一个根如果你不知道什么是连续,我就没办法了.
已经证明出他是单调减少的,然后又f(0)=1,f(1)=0,所以在(0,1)区间内,只有一个数x使得f(x)=0.如果不是单调的,那只能得出在该区间存在解,但不一定唯一,单调性保证了解的唯一性.证明:
令f(x)=X^4-4x+2f(1)=-1f(2)=10故证明方程X^4-4x+2=0在区间(1,2)内至少有一根
设f(x)=x^5-3x-1f(1)=-3,f(2)=25-3
-1,函数值》0,0,函数值0,利用两个中值定理,肯定存在x1,x2分别在-10和02之间存在令函数值=0得证
设f(x)=x^3-4x^2+1f(0)=1>0f(1)=1-4+1=-2
f(x)=x^5-3x-1f(1)=-3f(2)=25所以(1,2)之间必然有一个值使f(x)=0即方程X的5次幂-3X=1在区间(1,2)内至少有一个实根f'(x)=5X^4-3所以在(1,2)之间
求导.1.两次求导得出X=4/3是二阶导数取得最小值-16/3画出二阶导数的大概图形2.对于一阶导数根据二阶导数和X=0和X=8/3是一阶导数等于0画出一阶导数的大概图形3.由一阶导数得对于原函数X=
f(1)0并且函数连续,所以一定和x轴有交点
证明:令f(x)=x³-4x²+1,则f(x)在(0,1)内连续∵f(0)=1>0f(1)=-2
运用根的存在定理呀,引入辅助函数f(x)=sinx+x+1.它在[-pi/2,pi/2]上连续,f(-pai/2)=-pai/20根据根的存在定理,则在(-pi/2,pi/2)内至少存在一个数x使得f
设:f(x)=x^4-4x-2f(-1)=1+4-2=3>0f(0)=0-0-20所以,x^4-4x-2=0在区间[-1,2]内至少两次通过x轴即:方程x^4-4x-2=0在区间[-1,2]内至少有两
证明:原方程可化为x^5-3x-1=0令f(x)=x^5-3x-1要使得方程在区间(1,2)内至少有一个实根,即要求f(x)与x轴至少有一个交点.f(1)=-30所以f(x)与x轴在区间(1,2)内必
设Fx=4x-2^xF0=-10F0*F1
这个用反证即可,你设这方程在(2,3)没有根,令f(x)=x^3-6x+2必有f(2)*f(3)>0很明显的f(2)*f(3)
令f(x)=x-2sinxf(π/2)=π/2-20又f(x)在(π/2,π)内连续∴必存在x属于(π/2,π)使f(x)=0即方程方程x-2sinx=0在区间(π/2,π)内至少有一个实根
f(x)=x^4-3x^2+7x-10f(1)0即f(1)和f(2)异号且f(x)在(1,2)连续所以f(x)和x轴在(1,2)至少有一个交点所以在(1,2)内至少有一个根
有一个实根,F(x)=x³-4x²+1=0,求导得3x²-8x