证明方阵的特征值的和=主对角线的和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:32:36
证明方阵的特征值的和=主对角线的和
求方阵A= 的特征值及特征向量.

由于A为对称矩阵,故存在正交矩阵U使得U^TAU=diag{a1,a2,a3,a4}.其中a1,a2,a3,a4为A的特征值.又因为A的秩为1,故a1,a2,a3,a4中只有一个不为0,另外三个都为0

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3

答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会

如何在已知方阵的特征值和特征向量的情况下求方阵?

这其实是我们常做的矩阵对角化的逆运算,P-1AP=B,我们平常已知A,求P和B,现在已知P和B,求A,A=PBP-1,其中B是特征值组成的对角阵,P的列向量就是特征值对应的特征向量,要特别注意这里的对

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

特征值和特征向量的性质证明?

第一二个用韦达定理证明第三个用代数基本性质证明再问:我也知道用韦达定理,关键是不明白第三个式子如何展开得到的(如果是用行列式的定义,那么是如何展开的呢?),恳请您再说的详细点,谢了!!或者给我点资料也

证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0

设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0

设λ为方阵A的特征值,证明λ²是A²的特征值.

(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值

设入不等于0是m阶方阵Am*nBn*m的特征值,证明入也是n阶方阵BA的特征值

λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λx=ABx=0,得λ=0,矛盾).所以Bx是BA的属于特征值λ的特征向

证明,方阵A与方阵AT有相同的特征多项式,从而有相同的特征值.

利用|xE-A^T|=|(xE-A)^T|=|xE-A|==>方阵A与方阵AT有相同的特征多项式,从而有相同的特征值.

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

大学线性代数问题:设u 和 v 是正交的非零实向量 证明 :方阵 A = UV^T的特征值只能为零,且A不可对角

U,V正交,则V^TU=0,所以A^2=(UV^T)(UV^T)=U(V^TU)V^T=0.设k是A的特征值,则k^2=0,所以k=0,A的n个特征值都是0.A的秩是1,所以方程组Ax=0的基础解系有

一个n阶方阵的不同特征值对应的特征向量线性无关,错的,如何证明?

这个结论是对的呀再问:关于矩阵下面说法错误的是:1.矩阵的秩等于该矩阵的行向量组的秩;2.矩阵的秩等于该矩阵的列向量组的秩;3.一个n阶方阵的不同特征值对应的特征向量线型无关;4.相似矩阵有相同的特征

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

已知2阶方阵A的特征值为x=1,y为负三分之一.方阵B=A的二次方,求B的特征值和行列式

A的特征值为1,-1/3所以A^2的特征值为1,(-1/3)^2=1/9所以|A^2|=1x(1/9)=1/9

(线性代数)关于方阵的特征值和特征向量 的相关定理的证明

A代表矩阵,A和每一个向量作用,Ax=入x.这不就出来后边的等式了么.不明白HI我

线性代数。方阵的特征值和特征向量

是的,只能你用初等行变换基础解系是看整个行最简矩阵的所有的例题当然都是用的同样的方法哦

线性代数提问:设方阵A满足A的平方=A.证明A的特征值只能为0或1

设A的特征值为λ,则|A-λE|=0同时AA=A,所以|AA-λE|=0所以AA和A的特征值相同而又有AA的特征值是A的平方,所以λ^2=λ,所以λ=1或者0

设r是方阵A的特征值,如何证明r的平方是方阵A的平方的特征值

设x是r对应的非零特征向量,则有Ax=rx,上式两边同左乘A,则AAx=rAx=rrx,由此可以得到r^2是A^2的特征值