证明矩阵的行列式小于等于对角元素的乘积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:30:04
证明矩阵的行列式小于等于对角元素的乘积
线性代数 行列式我们知道上(下)三角形矩阵和对角矩阵的行列式等于对角元的乘积,也知道副对角行列式等于(-1)^[n(n-

是的这是斜下三角行列式再问:老师,那是不是可以这么认为:斜上三角行列式,斜下三角行列式和副对角行列式都等于(-1)^[n(n-1)/2]a1a2…an呗?再答:对的

如何证明正交矩阵的行列式 等于正负1?

正交矩阵有性质AA'=A'A=E;所以|AA'|=|E|;即|A||A'|=1,又|A|=|A'|所以|A|^2=1|A|=1或-1

正交矩阵的行列式的平方等于一,怎么证明?

A*(AT)=E两边取行列式,由于A与AT行列式相等,则|A|^2=1注:AT是A的转置

线性代数证明伴随矩阵的行列式值等于原矩阵行列式值的n-1次方

A*这个记号不是很规范的记号,我用adj(A)来写首先考虑A可逆的情况Aadj(A)=det(A)I两边取行列式得det(A)det(adj(A))=det(A)^n所以det(adj(A))=det

矩阵A的行列式等于0的充要条件是A的秩小于n 为什么?

1、任何方阵都可以通过初等行变换转化为上三角阵.2、上三角阵的行列式为0当且仅当主对角线上的元素中有0.3、n阶上三角阵的秩=n-主对角线上0的个数.4、初等行变换=左乘(可逆)初等矩阵.于是初等行变

线性代数:二阶矩阵的平方等于零,为什么他的行列式等于零,秩小于等于一?

因为0=det(A*A)=det(A)*det(A),所以det(A)=0,所以秩小于等于1.其中det()是矩阵的行列式.

如何证明两行相同的矩阵行列式等于0

高斯消去法将相同的两行相减,得到一行全为零,所以行列式为0再问:那如何证明消去后行列式不变呢?再答:这个书上给的运算规则就是这样的啊。。。

线性代数对角矩阵的证明

手写也是这么写,不明白为什么电脑写的你就看不懂

设2阶矩阵A的行列式为负数,证明A可相似于一对角阵

结论仅对实矩阵成立,此时两个特征值不相等.

正定矩阵行列式小于等于对角线乘积

用矩阵阶数n数学归纳法.当n=1,2时结论成立.设对n-1阶正定阵结论成立,则对n阶正定阵分块为[A(n-1)a;a^Tann],左上角是n-1阶正定阵,则左乘矩阵【E(n-1)0;-a^TA(n-1

A为两阶方阵 A的行列式的值小于0 求证A相似于对角矩阵

证明:因为A的行列式的值小于0而A的行列式等于其所有特征值的乘积所以2阶方阵A有两个不同的特征值(一正一负)所以A可对角化.

分块对角矩阵行列式等于分块行列式相乘,怎么证明?

将每个子方阵通过行(列)变换,化为上(下)三角矩阵,则大矩阵化为上(下)三角矩阵,则大矩阵的行列式等于主对角线上元素的乘积;且每个子矩阵的行列式等于它们的上(下)三角矩阵主对角线上元素的乘积.即分块对

如何证明方阵A的行列式等于0,则它的伴随矩阵的行列式也等于0>

证明:假设|A*|≠0由A*可逆因为AA*=|A|E=0等式两边右乘(A*)^-1则得A=0故A*=0所以|A*|=0矛盾.

一个三角矩阵的行列式是不是等于其对角线上的主元相乘?

是的.不可逆的矩阵是特征值中最少有一个0,这个矩阵有5个特征值.其中有一个为0,没有问题.

矩阵乘积的行列式等于矩阵行列式的乘积?

你先把行列式的基本性质复习复习,都掌握之后就能看懂了最关键的性质就是把行列式某一行的若干倍加到另一行上整个行列式的值不变

已知二阶矩阵A的行列式为负数,证明A可以相似于对角阵.

结论仅对实矩阵成立,此时两个特征值不相等再问:那你到时证明一下实矩阵的呀?再答:不相等怎么证明再问:这是我们的作业题不会有错吧?再答:喂不管怎么样你采纳一下啊

证明 :主对角元全为1的上三角矩阵的逆矩阵也是主对角元全为1的上三角矩阵

既然存在对角元素,那这个矩阵应该是n阶方阵,先将矩阵分块成ABCD(1)四块,不管n是不是2的倍数,当然不是更好,因为不是的话,我们就先可以将D分为1,也就是最右下角的元素.这里C显然为0矩阵,因为上

分块对角矩阵改变主对角元次序后与原来的矩阵相似,要怎么证明

0EnEm0乘Am00Bn乘0EmEn0等于Bn00Am再问:那对于分成更多块的分块对角矩阵就是以上面这个过程为基础进行多次变换吗?再答:是的.完全类似

证明.若A是主对角元全为零的上三角矩阵,则A^2也是主对角元全为零的上三角矩阵

定义证明,定义证明再问:不会,其实书上的例题证明我就没看明白再答:就是罗列每个矩阵的每个元素,然后按照矩阵乘法做运算,看下结果是否相符。