证明若AB均为三阶实对称矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:36:02
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转
(AB+BA)T=(AB)T+(BA)T=BTAT+ATBT=BA+AB=AB+BA,所以AB+BA是对称矩阵;(AB-BA)T=BTAT-ATBT=BA-AB=-(AB-BA)所以AB-BA是反对称
证明:∵A是对称矩阵∴A^T=A∵B是反对称矩阵∴B^T=-B∴(AB-BA)^T=B^T*A^T-A^T*B^T=-BA-A(-B)=AB-BA∴AB-BA是对称矩阵证毕
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
题:若A对称矩阵,B是反对称矩阵,AB-BA是对称矩阵吗?怎么证明?由已知,A=A',B=-B'故(AB-BA)'=B'A'-A'B'=-BA+AB=AB-BA即AB-BA是对称矩阵.
考察(AB+BA)^T(AB+BA)^T=(AB)^T+(BA)^T=(B^T)(A^T)+(A^T)(B^T)由于A,B均为n阶对称矩阵所以原式=BA+AB所以AB+BA也是对陈阵.
再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气
(AB+BA)T=(AB)T+(BA)T=BTAT+ATBT=BA+AB=AB+BA所以AB+BA也为对称矩阵
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
证明:因为A,B均为n阶的对称矩阵,所以A'=A,B'=BAB为对称矩阵(AB)'=ABB'A'=ABBA=AB即A与B可交换
(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵
对任一n维非零列向量x,总有x'(A'A)x=(Ax)')(Ax)>=0,且x'x>0所以当a>0时,有x'Bx=ax'x+x'(A'A)x>0故B正定
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
若A,B都是n阶对称矩阵,则有A的转置=A,B的转置=B.(2A--3B)的转置=2*A的转置-3*B的转置=2A--3B∴2A-3B也是对称矩阵.(AB--BA)的转置=(AB)的转置--(BA)的
(AB+BA)T=(AB)T+(BA)T=BTAT+ATBT=BA+AB=AB+BA,所以AB+BA是对称矩阵;(AB-BA)T=BTAT-ATBT=BA-AB=-(AB-BA)所以AB-BA是反对称
1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'