试证明1 2(X1^2 X2^2)是无偏估计量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:09:03
试证明1 2(X1^2 X2^2)是无偏估计量
f(x)=x^2-x+c定义在区间[0,1]上,x1、x2均属于[0.1],且x1不等于x2.证明|f(x2)-f(x1

|f(x2)-f(x1)|=|x2^2-x2+c-x1^2+x1-c|=|(x2+x1)(x2-x1)+(x1-x2)|=|(1-x1-x2)(x1-x2)|=|x1-x2|*|1-x1-x2|因为0

证明:(x1+x2+...xn)/n<根号[(x1^2+x2^2+...xn^2)/n]

琴生不等式,其实就是下凸函数的性质你看一下百科上的琴生不等式的加权形式加权形式为:  f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);

已知X1+x2+X2+...+Xn=1,证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3

解答如下:证法一:均值不等式.X1^2/(X1+X2)+(X1+X2)/4≥2根号[X1^2/(X1+X2)×(X1+X2)/4]=X1X2^2/(X2+X3)+(X2+X3)/4≥2根号[X2^2/

已知f(x)=tan x,x∈(0,pi/2),x1,x2是它的两个根,x1,x2∈(0,pi/2),证明 f(x1)+

用图象来证明,不好说啊总之这个是凹函数的一个性质,你把tanX的图象的(0,pi/2)部分的图象画出来,然后随便在(0,pi/2)内取两个点令X1,X2,把X1,X2对应的函数值在图象上标出来然后给两

x1,x2是大于0的实数,如何证明InX1-InX2=2(X1-X2)/(X1+X2)不成立

化简一下ln(X1/X2)=(X1-X2)/(X1+X2)ln(X1/X2)=[(X1/X2)-1]/[(x1/x2)+1]令X1/X2=t则lnt=(t-1)/(t+1)=1-[2/(t+1)]具体

已知函数f(x)=2的X次方,X1,X2是任意实数且X1不等于X2,证明0.5(f(x1)+f(x2))>f((x1+x

(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.

已知函数f(x)=x乘以e的-x次方.(1)如果x1不等于x2且f(x1)=f(x2),证明x1+x2大于2

可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图

证明:若f(x)=ax+b,则f((x1+x2)/2)={f(x1)+f(x2)}/2]

f(x)=ax+bf((x1+x2)/2)=a((x1+x2)/2)+b=ax1/2+ax2/2+b[f(x1)+f(x2)]/2=[ax1+b+ax2+b]/2=ax1/2+ax2/2+b所以f((

已知二次函数f(x)=ax^2+bx+c,若对任意x1x2∈R,且x1<x2,f(x1)不等于f(x2),试证明存

证明:∵f(x1)≠f(x2).不妨设f(x1)<f(x2).另设f(x1)=A1,f(x2)=A2,A=(A1+A2)/2.易知,A1<A<A2.构造函数g(x)=f(x)-A.(x1<x<x2)g

如何证明√x1x2≤(x1+x2)/2≤√(x1^2+x2^2)/2

x1>0、x2>0(√x1-√x2)^2>=0(√x1)^2-2√(x1x2)+(√x2)^2>=0x1+x2-2√(x1x2)>=0√(x1x2)=0x1^2+x2^2>=2x1x22(x1^2+x

已知函数f(x)=2^x,x1,x2是任意实数,且x1≠x2.证明1/2[f(x1)+f(x2)]>f[(x1+x2)/

不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证

函数f(x)=a^x(a大于0且a≠0),试证明:对于任意两个实数x1,x2都有f(x1+x2/2)≤1/2[f(x1)

x>=0,y>=0时,有x+y大于等于2倍根号下xy(貌似俗称重要不等式)f((x1+x2)/2)=a^((x1+x2)/2)=根号下(a^x1*a^x2).1(f(x1)+f(x2))/2=(a^x

已知函数f(x)=2^x.x1x2是任意实数且x1不等于x2,证明1/2f(x1)+f(x2)>f[(x1+x2)/2]

不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证

已知函数f(x)=xe^-x(x属于R) 如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2

证明:f'(x)=(1-x)e^(-x),当f'(x)=0时,有x=1.当x>1时,f'(x)<0;当x<1时,f'(x)>0.所以,在x=1时f(x)取得极大值和最大值.又当x趋近于+∞时,f(x)

min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2

至少我这里没有任何问题如果你有问题给具体的提示文字

(x1+x2+...+xn)^2

这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式

已知函数f(x)=xe^-x(x属于R) 如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2

由于f(x)=xe^(-x),x∈R所以x=f(x)/(e^x)由题意,可以设f(x1)=f(x2)=K所以:x1=f(x1)/(e^x1)=K/(e^x1)同理:x2=K/(e^x2)考虑到x1与x