试证明1 2(X1^2 X2^2)是无偏估计量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:09:03
|f(x2)-f(x1)|=|x2^2-x2+c-x1^2+x1-c|=|(x2+x1)(x2-x1)+(x1-x2)|=|(1-x1-x2)(x1-x2)|=|x1-x2|*|1-x1-x2|因为0
琴生不等式,其实就是下凸函数的性质你看一下百科上的琴生不等式的加权形式加权形式为: f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);
解答如下:证法一:均值不等式.X1^2/(X1+X2)+(X1+X2)/4≥2根号[X1^2/(X1+X2)×(X1+X2)/4]=X1X2^2/(X2+X3)+(X2+X3)/4≥2根号[X2^2/
用图象来证明,不好说啊总之这个是凹函数的一个性质,你把tanX的图象的(0,pi/2)部分的图象画出来,然后随便在(0,pi/2)内取两个点令X1,X2,把X1,X2对应的函数值在图象上标出来然后给两
化简一下ln(X1/X2)=(X1-X2)/(X1+X2)ln(X1/X2)=[(X1/X2)-1]/[(x1/x2)+1]令X1/X2=t则lnt=(t-1)/(t+1)=1-[2/(t+1)]具体
(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.
可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图
还需加条件.否则无法证明X1,X2线性无关.
f(x)=ax+bf((x1+x2)/2)=a((x1+x2)/2)+b=ax1/2+ax2/2+b[f(x1)+f(x2)]/2=[ax1+b+ax2+b]/2=ax1/2+ax2/2+b所以f((
证明:∵f(x1)≠f(x2).不妨设f(x1)<f(x2).另设f(x1)=A1,f(x2)=A2,A=(A1+A2)/2.易知,A1<A<A2.构造函数g(x)=f(x)-A.(x1<x<x2)g
x1>0、x2>0(√x1-√x2)^2>=0(√x1)^2-2√(x1x2)+(√x2)^2>=0x1+x2-2√(x1x2)>=0√(x1x2)=0x1^2+x2^2>=2x1x22(x1^2+x
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
x>=0,y>=0时,有x+y大于等于2倍根号下xy(貌似俗称重要不等式)f((x1+x2)/2)=a^((x1+x2)/2)=根号下(a^x1*a^x2).1(f(x1)+f(x2))/2=(a^x
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
证明:f'(x)=(1-x)e^(-x),当f'(x)=0时,有x=1.当x>1时,f'(x)<0;当x<1时,f'(x)>0.所以,在x=1时f(x)取得极大值和最大值.又当x趋近于+∞时,f(x)
至少我这里没有任何问题如果你有问题给具体的提示文字
这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式
由于f(x)=xe^(-x),x∈R所以x=f(x)/(e^x)由题意,可以设f(x1)=f(x2)=K所以:x1=f(x1)/(e^x1)=K/(e^x1)同理:x2=K/(e^x2)考虑到x1与x