o为三角形abc内一点,a,b,c分别在oa,ob,oc上,且ab平行bc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:34:16
o为三角形abc内一点,a,b,c分别在oa,ob,oc上,且ab平行bc
一道数学题已知三角形ABC的三边长BC=a,AC=b,AB=c,O为三角形ABC所在平面内的一点,若a*向量OA+b*向

a*向量OA+b*向量OB+c*向量OC=0向量不难得出每个小式子都为0a*向量OA=a*向量OA的模*cosθ只能使cosθ=0则θ=90度所以只能是垂心

如图,O为三角形ABC内任意一点,求证:OA+OB大于AC+BC急!

写反了吧AC+BC>OA+OB证明:延长BO交AC于D∵BC+CD>BD,AD+OD>OA∴BC+CD+AD+OD>BD+OA∴BC+AC+OD>OD+OB+OA∴AC+BC>OA+OB数学辅导团解答

已知点O为三角形ABC内一点,且OA+OB+OC=0,求证O为三角形重心.

证明:作图,过B作BE平行OC且BE等于OC,OE连接交BC于FOB+OC=OB+BE=OE因BE平行且等于OC所BOCE为平行四边行所F为OE中点OF=1/2OE因OA+OB+OC=0所OB+OC=

若三角形ABC的三边a、b、c成等差数列且a小于b小于c,G为三角形ABC的重心I为三角形的内心,O是平面内任意一点

哈哈哈,够搞笑的,G在已知中出现了,求证里却没出现,是你抄错了,还是题目本身就是这样的?

如图:O是△ABC内任意一点A'.B'.C'内分别是OA.OB.OC的中点.三角形ABC与三角形A'B'C'相似吗?为什

这和o无关啊……相似是必然的,中位线平行于底边,然后直接用平行或用AAA都可以证明相似~

O为三角形ABC内任一点点A`,B`,C`,分别是线段OA、OB、OC的中点

相似.因为A`B`是△OAB的中位线,所以A`B`//AB,且A`B`=1/2AB,即A`B`/AB=1/2同理:A`C`/AC=1/2B`C`/BC=1/2所以A`B`/AB=A`C`/AC=B`C

O为平行四边形ABCD内任意一点,连接OA、OB,OC、OD、BD,三角形AOB面积为a,三角形BOC面积为b,则三角形

根据平行四边形的定理来做这道题设平行四边形中,ac与bd交于点e,由于不知道a,b的大小,先设a大于b,三角形abo与三角形obc的高是相等的设高为h,三角形boe的底边为x得(2a/h)-x=(2b

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

如图,O为三角形ABC内任意一点,求证:OA+OB<AC+BC

证明:延长AO交BC于D∵AC+CD>AD,BD+OD>OB∴AC+CD+BD+OD>AD+OB∵CD+BD=BC,AD=OA+OD∴AC+BC+OD>OA+OD+OB∴AC+BC>OA+OB数学辅导

已知三角形ABC中,O为平面内一点,且设向量OA=向量a,向量OB=向量b,向量OC=向量c

(向量a+向量b)•向量AB=(向量b+向量c)•向量BC=(向量c+向量a)•向量CA,——》(向量a+向量b)•(向量b-向量a)=(向量b+向量c

O是三角形ABC内任意一点,BC=a,AC=b,AB=c,说明OA+OB+OC大于2分之1(a+b+c)

∵OA+OB>ABOA+OC>ACOB+OC>BC∴OA+OB+OA+OC+OB+OC>a+b+c即OA+OB+OC>(a+b+c)/2

已知:如图,O为三角形ABC内任意一点.求证:角BOC=角1+角2+角A

连接AO延长至BC于D,则可看到角BOD为三角形AOB的外角,角COD为三角形AOC的外角,所以角BOD等于角1加上角BAO,角COD等于角2加上角OAC,角BOD加上角COD既是角BOC,即可得所证

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

设O为三角形ABC所在平面内一点(三角形外),CD垂直AB于D,若矢量OA=a,OB=b,OC=c.试用a,b,c表示矢

设OD=λa+(1-λ)b,则CD=OD-OC=λa+(1-λ)b-c,AB=OB-OA=b-a,且CD*AB=0,故[λa+(1-λ)b-c]*(b-a)=0,λ=[(b-c)*(b-a)]/(b-

已知O为三角形ABC所在平面内一点,

在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和

已知:如图,O为三角形ABC内任意一点,求证:角BOC=角1+角2+角A.

延长CO,交AB于D.角BOC=角1+角BDO(外角等于不相邻两内角和)角BDO=角A+角2(同上)所以,角BOC=角1+角2+角A.证毕!

O是三角形ABC内任意一点,BC=a,AC=b,AB=c,说明OA+OB+OC大于2分之1(c+b+a)

在△ABO,△ACO,△BCO中根据三角形的性质,任意两边之和大于第三边得OA+OB>AB=c,OA+OC>AC=b,OB+OC>BC=a所以(OA+OB)+(OA+OC)+(OB+OC)>c+b+a

已知点O为三角形ABC内一点,试比较角BOC与角A的大小.

角BOC大于角A用连接ao并处长ao利用三角形的外角大于任何一不相邻的内角即可证明