pb为圆o的切线b为切点过b作b垂足为c交圆o与点a连接paao

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:22:34
pb为圆o的切线b为切点过b作b垂足为c交圆o与点a连接paao
四点共圆的运用PA,PB 是圆O的两条切线,A,B为切点.D是弧AB上一点,过D点作圆O的切线分别交PA,PB于E,F,

PQ平分线段EFsinEPQ/sinFPQ=sinPEF/sinPFE,即sinAPQ/sinBPQ=sinPEF/sinPFE(把角的名字换一下而已)APBO构成一个关于对角线OP对称的四边形,Q在

如图,P为圆O外一点,直线OP交圆O于点B,C,过点P作圆O的切线PA,A为切点,已知PA/PB=3/2,求tan角PA

辅助线已作如图先证三角形ABP相似于三角形CAP:公共角P角ABP=角CAB+角ACB角CAP=角OAP+角CAO且三角形OAC等腰,从而角ACB=角CAO因为角CAB=角OAP=90°所以三角形AB

如图,PA,PB是圆O,A、B为切点,过弧AB上的一点C作圆O的切线,交PA于D,交PB于E,

(1)连结OA、OB、OC、OD、OE,∵PA、PB是圆O切线,∴∠OAP=∠PBP=90°,又∵∠APB=70°,∴∠AOB=55°,∵∠OAD=∠OCD=90°,OD=OD,OA=OC,∴RT△A

过⊙O外一点P作⊙O的两条切线PA、PB,切点为A和B,若AB=8,AB的弦心距为3,则PA的长为(  )

如图:连接OA,OB,∵PA、PB为⊙O的切线,∴OA⊥AP,OB⊥BP,PA=PB,故PC⊥AB,且AC=BC=12AB=12×8=4cm,OC=3cm,由勾股定理得OA=AC2+OC2=42+32

(2012•安庆一模)如图,过⊙O外一点P作⊙O的两条切线PA、PB,切点分别为A、B.下列结论中,正确的是______

∵PA、PB是⊙O的两条切线,∴∠APO=∠BPO,PA=PB,∴OP垂直平分AB;故①正确;∵PB⊥OB,∴∠OBP=90°,∴∠BOP+∠BPO=90°,∴∠BOP+12APB=90°,得不到∠A

已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点

令A(x1,y1),B(x2,y2),P(xo,yo)由切线公式可得直线PAx1x+y1y=1,直线PBx2x+y2y=1所以P满足x1xo+y1yo=1和x2xo+y2yo=1所以可得直线AB的方程

PA,PB是圆的切线,A,B为切点,过弧AB上一点C做圆的切线,交PA于D,交PB于E,

(1)连结OA、OB、OB,∵DA、DC是圆O的切线,∴∠OAD=∠OCD=90°,又∵OA=OC,OD=OD,∴RT△AOD≌RT△COD,∴∠AOD=∠COD,DA=DC,同理可证∠BOE=∠CO

如图,PA、PB为O的切线,切点为A、B,D为劣弧AB上一点,过点D作O的切线MN,分别交PA、PB于点M、N,若PA=

∵PA、PB为O的切线∴PA=PB=8同理MA=MDNB=ND∴PA=PM+MA=PM+MDPB=PN+NB=PN+ND∴△PMN的周长=MN+PM+PN=MD+ND+PM+PN=PA+PB=16

如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,

证明:(1)∵AC是圆O的直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB在△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么PA*PB的最小值为?

PA*PB=PA²*COS∠APB①=PA²*(PA²+PB²-AB²)/(2*PA*PB)②=PA²-AB²/2③=OP&sup

如图,pb为圆o切线,b为切点,直线po交圆o于E,F,过B作PO的垂线BA,垂足为D,交圆O于AA,延长AO与圆O交于

EF的平方=4OD×OP证明稍等……再答:首先证明直线PA为⊙O的切线证明线段EF、OD、OP之间的等量关系再问:若BC为6,角F的正切为二分之一,求角ACB的余弦和PE的长再答:

如图,PA.PB是圆o的切线,点A.B为切点

S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2

如图,过圆O外一点P作圆O的两条切线PA、PB,A、B为切点,BD⊥PA于点D,AE⊥PB于点E,AE、BD交于点H 求

因为PA,PB为切线所以PA=PB因为BD⊥PA于点D,AE⊥PB于点E三角形ABP的面积可以表示为二分之一BD*AP或者二分之一AE*BP所以AE=BD因为BD⊥PA,AE⊥PBAB=AB所以三角形

如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点.过A作AD⊥BP,交BP于D点,连结AB,

∵AC是直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴△ABC∽△ADB.

AC是⊙O的直径,AC=10cm,PA,PB是⊙O的切线,A.B为切点.过A作AD⊥BP,交BP于D点,连接AB,BC.

因为AC为圆O的直径所以角ABC=90度因为AD⊥BP所以角ADB=90度因为角ACB所对弧AB角ABD所对弧AB所以角ACB=角ABD所以△ABP∽△ABD

如图,PA,PB是圆O的切线,A,B为切点,过点A作圆O的直径AC,并延长交PB于点D,连接OP,CB,求证BC//OP

证明:连接OB∵PA、PB是⊙O的切线∴PA=PB(从圆外一点引圆的两条切线长相等)又∵OA=OB,OP=OP∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP∴∠AOB=∠AOP+∠BOP=2∠AO

如图,以圆O外一点P引圆O的切线PA,PB,切点分别为A,B,Q为劣弧AB上一点,过Q做圆O的切线交PA,PB于E,F,

∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=

已知圆O:x2+y2=9,过圆外一点P作圆的切线PA,PB(A,B为切点),当点P在直线2x-y+10=0上运动时,则四

由圆x2+y2=9,得到圆心O坐标为(0,0),半径r=3,又直线2x-y+10=0,∴|PO|min=105=25,又|OA|=3,∴在Rt△AOP中,利用勾股定理得:|AP|=11,则四边形PAO

已知圆O的半径为1,PA,PB为圆的两条切线,A,B为两切点,那么→PA* →PB最小值为?

向量PA*向量PB=PA*PB*cos∠APB=PA^2*(PA^2+PB^2-AB^2)/(2PA*PB).余弦定理=PA^2-AB^2/2=OP^2+1-4(1^2-d^2)/2=OP^2+2d^