转置矩阵与原矩阵等价么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:13:40
是的矩阵相似的充分必要条件是有n个线性无关的特征向量既然等价那一定有n个线性无关的特征向量所以相似但反过来不成立
等价一般是指可以通过初等变换变成另一个,本质上只需要两个矩阵秩相同就可以了.是个很宽泛的条件,应用不大.A相似于B,是存在非异矩阵P,使得PAP^-1=B,这个是线性代数或者高等代数里面最重要的关系,
不一样."等价关系"指的是满足自反、对称、传递三种性质的关系,适用于所有的学科、所有的数学分支.矩阵的等价指的是可以通过初等变换互换.至于为什么这样称呼,已经不知道原因了.可以给你一种便于理解的解释:
直接把矩阵展开写成A=(a11a12……a1na21a22……a2n………………an1an2……ann)然后直接把A’写出来直接乘在一起,关注主对角线上的元素就可以了
相似必等价,等价未必相似A与A-λE不等价,因为等价的充分必要条件是秩相同
矩阵的行(列)等价,则矩阵必等价反之不成立
1、若存在可逆阵P、Q,使PAQ=B,则称矩阵A与矩阵B等价;\x0d2、若存在可逆阵P,使P^(-1)AP=B,则称矩阵A与矩阵B相似;\x0d3、若存在可逆阵P,使P'AP=B,则称矩阵A与矩阵B
应该不正确吧.以我理解矩阵的等价是说QAP=BA等价到B是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边
亲,这是定义哦.若矩阵A经过若干次初等变换变为B,则称A与B等价.再问:等价有什么意义呢再答:从定义上看,等价实际上就是对矩阵进行初等变换,而这种变换,不改变矩阵的秩,对于求逆矩阵、解矩阵方程、解线性
广泛意义的等价,是集合在某种变换下保持不变性.如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到.矩阵在初等变换下是行列式不变的.在线性代数中,合同、相似都是等价关系
如果两个n维向量组等价,则以它们为列向量组成的矩阵A,B的秩相等,但是不一定等价,因为这两个矩阵的列数可能不同.比如,一个5行3列的矩阵与一个5行4列的矩阵根本谈不上等价与不等价.(如果A,B的列数相
Gram-Schmidt正交化的每一步都是初等变换,当然保持秩不变至于一楼所说的特征值不变纯属无稽之谈,Gram-Schmidt正交化未必只针对方阵,即使是方阵也不保证特征值不变再问:能保证吧?相似矩
等价矩阵相似,相似矩阵不一定等价.
不好比你参考:矩阵A,B行等价的充要条件是存在可逆矩阵P满足PA=B矩阵A,B列等价的充要条件是存在可逆矩阵P满足AP=B再问:矩阵A,B行等价,那么A和B的行向量等价应该是对的吧,那么反过来A,B是
是等价的.一个矩阵经过若干次初等变换得到的矩阵都与这个矩阵等价,这是根据等价的定义得到的.再问:那么任意的两个等价的矩阵,是不是只有它们的秩是一直相等的,其他的(比如说行列式什么的)都不能保证一直相等
不一定吧,首先得是同形矩阵吧,转置之后一个是m*n,一个是n*m那就不等了,方阵的话还是等价的再问:方阵条件下,A,B等价,那A矩阵与B的转置矩阵是否等价呢再问:再问:请看看第三题吧再答:应该选D吧。
肯定可逆.首先告诉你一个结论就是等价矩阵的秩是相同的.A可逆则A的秩是N,则B的秩也是N即B的行列式不等于0,所以A可逆.等价矩阵的概念其实是一个矩阵A可以经过有限次的初等变化,转化为B,则称A与B等
不是等同,是等价矩阵等价指的是经初等变换之后两矩阵相同,看看书上关于矩阵等价的定义再问:那么,难道说,矩阵乘上一个数,和原矩阵等同,那成这个数还有什么意义?望赐教,拜谢再答:数乘是最基本的变换之一,这
广泛意义的等价,是集合在某种变换下保持不变性.如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到.矩阵在初等变换下是行列式不变的.在线性代数中,合同、相似都是等价关系再问:ʲô�Ǻ�ͬ���
如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型.再问:可