过椭圆x2 5 y2 4=1的右焦点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:11:26
由已知得FQ=b2a,MF=a2c-c,因为椭圆的方程为x2a2+y2b2=1(a>b>0),过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若△PQM为正三角形,所
∵椭圆方程为x2/5+y2/4=1∴c=√(a^2-b^2)=√(5-4)=1∴椭圆的右焦点为(1,0)∴过椭圆右焦点的直线Lab可设为(题目已知直线斜率存在,否则要分别讨论斜率不存在(直线垂直x轴)
抛物线y^2=4x的焦点F坐标(1,0)右顶点A(a,0)设过A的直线方程y/(x-a)=1/n=kny=x-a代入抛物线方程y^2=4(ny+a)y^2-4ny-4a=0设M(x1,y1),N(x2
设M(x1,y1),N(x2,y2),直线L的方程为x=√3或y=k(x-√3),M,N到直线x=4/√3的距离分别为d1,d2.(1)若直线L的方程为x=√3,有x1=x2=√3,d1=d2=4/√
由题意,设圆心为(0,a),半径为r,则x2+(y-a)2=r2,因为圆过椭圆x25+y24=1的右焦点且与其右准线相切,并且椭圆x25+y24=1的右焦点为(1,0),其右准线为:x=5所以1+a2
(1)设直线方程y=x-1,A(x1,y1),B(x2,y2),直线方程与椭圆方程联立方程组,消去y后关于X的一元二次方程,利用距离公式及根与系数关系可解出|AB|=4/3根号2(2)设中点(x,y)
右焦点F2(1,0)直线:y=x-1联立:3x^2/2-2x=0→x1x2=0,x1+x2=4/3→MN=√(1+1)*√(x1+x2)^2-4x1x2=4√2/3(2):题意也就是OM⊥ON→设直线
把直线的方程写出来,Y=X+k,带入右焦点的坐标,求出直线,接下来把直线带入椭圆,可以求出两个X来,就是直线和椭圆两个焦交点的横坐标,分别吧这两个横坐标对应的纵坐标求出来(带进直线方程),这样AB两个
解题思路:对,都是弦长问题解题过程:
该弦所在的直线的斜率为k=tan45°=1,过椭圆的右焦点(1,0),则直线方程为y-0=k(x-1)即y=x-1.把直线方程代入椭圆方程中,得x²/2+(x-1)²=1即3x
c=1c/a=1/2a=2,b^2=3x^2/4+y^2/3=1
椭圆焦点弦公式可参考:http://wenku.baidu.com/view/4331bad528ea81c758f578b0.html
依题知,M(-c,±2c),代入椭圆方程得,c^2/a^2+4c^2/(a^2-c^2)=1,解得e=√2-1.一楼答案太繁.圆锥曲线求离心率方法,首选极坐标,次选平面几何,三选定义,四选一楼的方法.
显然a=√3则三角形F1AB周长=AF1+AF2+BF1+BF2=4a=4√3由海伦公式S△F1AV=√[2√3(2√3-F1A)(2√3-F1B)(2√3-BA)]由均值不等式≤√{2√3[(2√3
设M(x1,y1),N(x2,y2),由题意可设直线l的方程为y=k(x-√3)代入椭圆方程x^2/4+y^2=1中可得:(1+4k^2)x^2-8√3k^2x+12k^2-4=0∴x1+x2=8√3
证明:圆半径为r,则r=AB/2分别过点A,B做右准线的垂线,则构成一个直角梯形,两底长分别为AF/e,BF/e(e为离心率)圆心到准线的距离d为梯形的中位线长即(AF+BF)/2e∵0
令椭圆的左、右焦点分别是F1、F2.由椭圆方程x^2/5+y^2=1,得:椭圆以原点为中心,两坐标轴为对称轴,且a=√5、c=√(5-1)=2.∵AB⊥x轴,∴A、B关于x轴对称,∴AF2=AB/2.
椭圆P(2.0)F(1.0)直线斜率显然存在设y=k(x-1)当k=0的时候,F代入方程那么Y=3/2.面积1*3/2/1/2*2=1.5所以直线为x=1当k不等于0的时候联立y=k(x-1)和x^2
a²=3,b²=2c²=3-2=1c=1所以F1F2=2c=2假设A在x上方,B在下方直线过(1,0)设直线是x-1=m(y-0)x=my+1代入2x²+3y&