p为三角形abc内一点,求证pa pb pc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:29:43
证明:过点A作AD⊥BC,交BC于点D.易知AD也是中线和角平分线.下面,我们首先来证明点P位于△ABD内.过点P作PE⊥BC,交BC于点E,则有BE²=PB²-PE²C
延长AP和BC相交于D点AC+CD>ADAD=AP+PDPD+BD>PB把三个式子整合起来就可以得到下面的结果:AC+CD+PD+BD>AP+PD+PB同时减去PD可以得到AC+CD+DB>AP+PB
第一题:并不困难的一道题,最容易的一个解法是建系解析,利用直线的斜率(正切)和向量求解即可.第二题:多说一些吧:第一步:不妨设a>b>c,a=b+m=c+m+n,m,n>0;第二步:a^2+b^2+c
过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P
证明:延长BP交AC于D∵AB+AD>BD,PD+CD>CP∴AB+AD+PD+CD>BD+CP∵AD+CD=AC,BD=BP+PD∴AB+AC+PD>BP+PD+CP∴AB+AC>BP+CP
已知P为三角形ABC内任意一点.求证:1/2(AB+BC+CA)CA,PA+PB>AB,三式相加得:2(PA+PB+PC)>AB+BC+CAPA+PB+PC>(AB+BC+CA)/2.因为AB+AC>
证明:延长BP至与AC相交于D,在△ABD内,AB+AD>BD,∴AB+AD+DC>BD+DC,即AB+AC>BD+DC①在△PDC和△BDC内,PD+DC>PC,∴PB+PD+DC=BD+DC>PB
利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2
因为PA+PB>AB,PB+PC>BC,PA+PC>AC,三式相加得2(PA+PB+PC)>AB+BC+CA,所以PA+PB+PC>1/2(AB+BC+CA)
利用‘三角形的两边之和大于第三边’可得:PA+PB>ABPB+PC>BCPC+PA>CA将三式相加,得2(PA+PB+PC)>AB+BC+CAPB+PB+PC>(AB+BC+CA)/2延长BP于AC交
证明:延长BP与AC边相交于点D,由三角形两边之和大于第三边得AB+AD>BD,PD+DC>PC,故AB+AD+PD+DC>BD+PC=PB+PD+PC,AB+AD+DC>PB+PC,即AB+AC>P
先证AB+BC大于AP+PC这个只要延长AP交BC于D然后AB+BD大于AP+PDPD+DC大于PC这两个相加,AB+BD+DC大于AP+PC也就是AB+BC大于AP+PC然后把ABC换两次,就得到了
据三角形三边关系.在三角形PAB中恒有AP+PB>AB,同理:AP+PC>AC,PB+PC大>BC.所以2(AP+BP+CP)>AB+AC+BC.又因为角BAC为120度,有角BPC恒大于120度.由
延长CP交AB于D.连接BP.因为PC=BC==》角CPB=角CBP于是角CPB90度==》角APB>角DPB>90度.所以在三角形ABP中,角APB>角ABP===》AB>AP.
以C为圆心CB为半径作圆则P在圆上,反向延长PC交圆于D显然角BPC为劣弧BD的圆周角故角BPC必为锐角(1)由P在三角形内则角APBBPCAPC均不可能大于180度(×)若角APB为锐角或直角,由上
延长BP与AC相交于点E,∵AB+AE>BP+PE,PE+EC>PC,∴AB+AE+PE+EC>PC+BP+PE.∴AB+AC>PC+BP.再问:太给力了,你的回答完美解决了我的问题!
P是三角形ABC所在平面&外的一点,P到三角形ABC三边的距离相等,O为P在平面&内的射影,且在三角形ABC内.求证:O是三角形ABC的内心.
旋转就可以了.将△ABP绕A点逆时针转60°,P点转到Q点.△ABP和△ACQ全等,∠APB=∠AQC,BP=QC.(如图所示)问题转化为:只需证明:∠AQC<∠APC.连接PQ.那么,AP=A
延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB
连接AP.在三角形ABP中,AB大于AP.在三角形ACP中,AC大于CP,所以AB+AC>BP+CP