p为三角形abc内一点,角APB=角BPC=120度证明PA PB PC的值最小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:29:47
第一题:并不困难的一道题,最容易的一个解法是建系解析,利用直线的斜率(正切)和向量求解即可.第二题:多说一些吧:第一步:不妨设a>b>c,a=b+m=c+m+n,m,n>0;第二步:a^2+b^2+c
这里有.http://zhidao.baidu.com/question/552588658.html?sort=6#answer-1391742743
知难而上:将三角形BPC绕点B逆时针旋转60度,成为三角形BDA,连DP∠DBP=60,DB=BP,BDP是等边三角形,所以:DP=2√3三角形ADP中,AD^2+DP^2=AP^2,所以三角形ADP
看过之后记得赞同哦!思路:可以直接证明AB+BC+CA>AP+BP+CP.证明:延长AP,交BC与点D.在△PBD中BD+PD>BP①在△ACD中AC+CD>AD②①+②得BD+PD+AC+CD>BP
pa+pb>abpa+pc>acpb+pc>bc上述三式加起来除以二就得到结论了
延长AP交BC于D,在△PBD和△ACD中,有PB
将△ABP绕A点逆时针旋转90°连接PQ,则AQ=AP=1,CQ=PB=3,∠QAC=∠PAB.又∵∠PAB+∠PAC=90°∴∠PAQ=∠QAC+∠CAP=∠PAB+∠PAC=90°∴PQ²
作三角形ABC任意两条边的中线,他们的交点即为重心,亦即所求的P点.证明:建立平面直角坐标系O-XY设点ABC的坐标分别为(X1,Y1)(X2,Y2)(X3,Y3)由重心坐标公式可得P[(X1+X2+
延长AP交BC与D,设AD=tAP=2t/5AB+t/5AC,故2t/5+t/5=1,t=5/3,三角形PBC与三角形ABC的的面积比=三角形PBC与三角形ABC的BC边上的高比为=PD/AD=2/5
AP=AB/4+AC/5AP=(1/20)[AB+4(AB+AC)]=(1/20)AB+(AB+AC)/5=(1/20)AB+(2/5)[(AB+AC)/2]设BC中点D,AF=(2/5)ADAB上点
过P作PD//ACPE//ABS四边形ADPE=AD*AE*sinA=3/7AB*1/7AC*sinAS△ADP=1/2*3/7AB*1/7AC*sinAS△ABP=7/3*S△ADP=1/2*AB*
延长CP交AB于D.连接BP.因为PC=BC==》角CPB=角CBP于是角CPB90度==》角APB>角DPB>90度.所以在三角形ABP中,角APB>角ABP===》AB>AP.
以C为圆心CB为半径作圆则P在圆上,反向延长PC交圆于D显然角BPC为劣弧BD的圆周角故角BPC必为锐角(1)由P在三角形内则角APBBPCAPC均不可能大于180度(×)若角APB为锐角或直角,由上
(1)向量AP+2向量BP+3向量CP=向量0.根据向量的减法可知:向量AP+2向量(AP-AB)+3向量(AP-AC)=向量0.即6AP-2AB-3AC=0,向量AP=1/3AB+1/2AC=1/3
三角形两边之和大于第三边AP+BP>ABAP+CP>ACBP+CP>BC然后上述三式加一加两边同除以2等证再问:具体怎么做?再答:∵P为△ABC内任意一点连接AP,BP,CP∴得△ABP,ACP,CB
根据三角形两边之和大于第三边定理可得AP+BP>ABBP+CP>BCCP+AP>AC所以2(AP+BP+CP)>AB+BC+CA即AP+BP+CP>0.5(AB+BC+CA).
已知三角形ABC中,AB=AC,P是三角形内一点,且有角APB>角APC,求证:PB角APC所以角APB>角ADB因为AD=AP所以角ADP=角APD所以角APB-角APD>角ADB-角ADP所以角B
延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB
根据向量减法可知:AP-AB=BP,AP-AC=CP,代入已知可得:3AP+4(AP-AB)+5(AP-AC)=12AP-4AB-5AC=0所以AP=AB/3+5AC/12设AD=hAP(h是常数)则