P抛物线y=x2-4x 5上一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:01:39
P抛物线y=x2-4x 5上一点
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)

1)焦点F(p/2,0),y0=p/2时x0=p/8,由抛物线定义,|PF|=x0+p/2=5p/8.2)当PA、PB斜率存在且倾斜角互补时,PAx=m(y-y0)+y0^2/(2p),PB:x=-m

抛物线x2=4y p是抛物线上的动点过p点作圆x2+(y+1)2=1的切线交直线y=-2于AB两点当PB恰好切抛物线与点

设P(a,b)b=a^2/4PB恰好切抛物线与点P,则PB:y=ax/2-a^2/4=ax/2-b由圆心到直线距离=1得:/b-1//根号(1+b)=1,得b=0或3(0舍去)由于两个P对称,不妨设a

抛物线的焦点弦公式已知Q(0,4),P为Y=X2+1上一点,则PQ绝对值的最小值是?

设P(x,x^2+1),PQ^2=x^2+(x^2-3)^2=x^4-5x^2+9=(x^2-2.5)^2+9-6.25,最小值就是2.75开方.

一道高中抛物线题,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,

用一减去二得来的你可以自己动笔算算再问:但是只能得出(x1+x2)/2=x-x0啊再答:我只能说你算错了,小伙子再问:原来是看错了

在抛物线y=-x2+1上求一点p(x1,y1),使过该点P的抛物线的切线与抛物线及两坐标轴所围图形的面积最小

设过p(a,b)的切线方程为y-b=K(x-a)  对抛物线求导  y'=-2x  y-b=-2a(x-a)  当X=0时,y=2a^2+b  当y=0时,x=a+b/(2*a)  切线与xy轴围成的

已知抛物线x2=4y的焦点F和点A(-1,8),P为抛物线上一点,则|PA|+|PF|的最小值是(  )

抛物线y=14x2的标准方程为x2=4y,p=2,焦点F(0,1),准线方程为y=-1.设p到准线的距离为PM,(即PM垂直于准线,M为垂足),则|PA|+|PF|=|PA|+|PM|≥|AM|=9,

设抛物线y平方=8x上一点p到y轴的距离是4,则点p到该抛物线焦点的距离是?

焦点为(2,0)因为点P到y轴距离为4,则点P到准线的距离为6,记得有个定理(自己看看书),点P到焦点的距离为(4+2)的绝对值(4为P点的横坐标,2为焦点的横坐标),即为6

如图,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D为抛物线的顶点,点P为第一象限的抛物线上的一点

解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:

已知点M(-2,4)及焦点为F的抛物线y=1\8x2,在此抛物线上求一点P,使|PM|+|PF|的值最小

由抛物线定义:|PF|=|pp'|欲|PM|+|PF|的值最小,p,p',m应三点共线,则p点横坐标为为-2新春快乐!追问:不好意思,没看懂你答案.为什么不用M.P.F三点共线呢?而且我的答案和你的不

已知抛物线P的方程是x2=4y,过直线l:y=-1上任意一点A作抛物线的切线,设切点分别为B、C.

(1)证明:设A(m,-1),B(x1,y1),C(x2,y2).∵抛物线P的方程是x2=4y,∴y′=12x.∴y1+1x1−m=12x1,∴14x12+1=12x12-12mx1,∴x12-2mx

在平面直角坐标系中,O为坐标原点,直线y=3x+4交y轴于点A,在抛物线y=2x2上是否存在一点P,使△POA的面积等于

解;假设存在一点P(m,n),使△POA的面积等于10;∴S=12OA•|m|,即10=12×4×|m|,解得:|m|=5,∴m=5或-5;把m代入y=2x2解得:n=50,∴P点的坐标为:(5,50

抛物线y=x2+2x,直线y=3与抛物线相交于a,b,p是x轴上一点,若pa+pb最小

如图,A'为A关于x轴对称点,PA=PA',要使PA+PB最小,则AB为直线,P为AB与x轴交点.A、B点坐标易求得A(-3,3)、B(1,3),则A‘(-3,-3),AB方程y=3/

(2014•南昌二模)抛物线C:x2=8y与直线y=2x-2相交于A,B两点,点P是抛物线C上不同A,B的一点,若直线P

如图所示,设A(x1,x218),B(x2,x228),P(x0,x208),R(xR,2),Q(xQ,2).联立y=2x−2x2=8y,化为x2-16x+16=0,∴x1+x2=16,x1x2=16

已知抛物线x2=4y上一点P到焦点F的距离是5,则点P的横坐标是______.

根据抛物线的定义可知P到焦点的距离为5,则其到准线距离也为5.又∵抛物线的准线为y=-1,∴P点的纵坐标为5-1=4.将y=4 代入抛物线方程得:4×4=x2,解得x=-4或4故答案为:-4

若P(1,m)是抛物线y=7x2-4上的一点,M为其顶点,求图象经过P、M两点的一次函数的表达式.

∵P(1,m)是抛物线y=7x2-4上的一点,∴m=7-4=3,∴点P为(1,3),∵M为抛物线y=7x2-4的顶点,∴M点的坐标为(0,-4),设直线PM的解析式为y=kx+b,∴k+b=3b=−4

p是抛物线y^2=4x上的一点,过P分别作俩直线交抛物线于不同的两点A(X1,X2)B(X2,Y2),PA与PB分别交x

选一个特例:A与O重合来做(则E与O也重合)由|PE|=|PF|=>xe与xf关于点(4,0)对称=>xe+xf=8∵xe=0∴xf=8直线FP方程为:(y-yp)(xf-xp)=(x-xp)(yf-

在抛物线y=x2上求一点P,使过点P的切线和直线3x-y+1=0的夹角为π4

由导数的定义得y'=2x,设曲线上一点P的坐标为(x0,y0),则该点的切线的斜率等于kp=2x0根据夹角公式可得到|2x0−31+2x0•3|=1解得:x0=−1或x0=14由x0=-1得y0=1由

过抛物线x2=4y的对称轴上任一点P(0,m),(m>0)作直线L,L与抛物线交于A,B两点

1、由题意设A(c,c^2/4)B(d,d^2/4)|AB|^2=(c-d)^2+(c^2/4-d^2/4)^2|OA|^2=c^2+c^4/16|OB|^2=d^2+d^4/16|OA|^2+|OB