p是三角形aef外一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:59:45
p是三角形aef外一点
P是三角形ABC所在平面外一点,且PA垂直平面ABC,若O、Q分别是三角形ABC和三角形PBC的垂心,

延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,

P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1

设PA=a,PB=b,PC=c,则(s1)^2+(s2)^2+(s3)^2=(1/4)[(a^2)(b^2)+(b^2)(c^2)+(c^2)(a^2)](2)AB^2=a^2+b^2,BC^2=b^

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.

四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC

三角形BEF全等于三角形AEF,C是BE延长线上的一点且ED平分角AEC求角FED的度数

△AEF≌△BEF则:∠AEF=∠BEFED平分∠AEC则:∠AED=∠CED而BEC为一直线则:(∠AEF+∠BEF)+(∠AED+∠CED)=180则:∠FED=∠AEF+∠AED=1/2*(18

如图所示,P是三角形ABC所在平面外一点,A',B',C'分别是三角形PAB.PBC.PAC的重心

作AB中点M,AC中点N,连MN则PM,PN分别过A',C',则由于PA':PM=2:3平面A`B`C`平行平面ABC

设P是三角形ABC所在平面外一点,P到三角形ABC各顶点的距离相等,且p到三角形ABC各边的距离相等.

作两条边的垂直平分线,两线交于一点,过此点作三角型所在的平面的垂线,所得线上平面外的点均是所求点.

设P是三角形所在平面外一点,G1,G2,G3分别是三角形PAB.三角形PBC.和三角形PCA的重心.

延长PG1交AB于P1,延长PG2交BC于P2,延长PG3交CA于P3.由重心性质,PG1/PP1=2=PG2/PP2.且P,P1,P2,G1,G2共面由相似可得G1G2//P1P2.同理,G1G3/

设P是三角形ABC所在平面外一点,P到三角形ABC各顶点的距离相等,且p到三角形ABC各边的距离相等

分析:过P作PQ⊥面ABC于Q,则Q为P在面ABC的投影,因为P到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的外心,Q到三角形ABC各边的距离相等,即Q为三角形ABC的外心,所以

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

三角形bef全等于三角形aef,c是be延长线上的一点,ed平分角aec,试判断de与ef的位置关系,并说明理由

△AEF≌△BEF则:∠AEF=∠BEFED平分∠AEC则:∠AED=∠CED而BEC为一直线则:(∠AEF+∠BEF)+(∠AED+∠CED)=180则:∠FED=∠AEF+∠AED=1/2*(18

P是三角形ABC所在平面外一点,A’B’C’分别是三角形PBC,三角形PCA,三角形PAB的重心

连结P和三个重心并延长交三边于三点再连结三重心,连结三交点可得连结得到的两三角形平行(重心3/2你应该知道)

特殊三角形这里没有图,所以自己画一下了 三角形ABC是等边三角形,P是三角形ABC外一点,且∠ABP+∠ACP=180度

延长CP到Q,使PQ=PB,∵∠ABP+∠ACP=180°,四边形ABPCA的内角和为360,∴∠BAC+∠BPC=180°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠BPC=180°-60°=

初二数学:三角形abc是等边三角形 p是三角形外一点,且角ABP+角ACP=180度.求证PB+P

再问:第二个因为的根据是什么再答:题目给的三角形ABC是等边三角形

已知P为三角形ABC所在平面外一点,G1、G2、G3、分别是三角形PAB,三角形PCB,三角形PAC的重心,求证:平面G

设H1,H2,H3分别为PG1,PG2,PG3交于AB,BC,AC的点,则G1G2//H1H2,G2G3//H2H3.所以,G1G2//面ABC,G2G3//面ABC.又,G1G2与G2G3相交,故面

P为三角形ABC所在平面外一点,PA垂直于平面ABC,角ABC=90度,AE垂直PB于E,AF垂直PC于F,求证面AEF

∵PA⊥平面ABC,BC∈平面ABC∴PA⊥BC,又∵BC⊥AB,(〈ABC=90°),∵PA∩AB=A,∴BC⊥平面PAB.2、由前所述,BC⊥平面PAB,AE∈平面PAB,∴BC⊥AE,∵AE⊥P

P是三角形ABC所在平面外一点,A',B',C'分别是三角形PBC,三角形PCA,三角形PAB的重心.1.求证:平面A'

分别连接P与重心并延长交三边于MNQ,分别连接MNQ与A`B`C`.由“重心到顶点的距离与重心到对边中点的距离之比为2:1”可得相似,因此可得线线平行,再得面平行

已知P是三角形ABC所在平面外一点,D.E分别是三角形PAB.三角形PBC的重心.求证:DE//AC,且DE=1/3AC

证明:连PD并延长交AB于点F,连PE并延长交CB于点G,连FGPD/PF=PE/PG=2/3∴DE//FG又∵FG=1/2*AC∴DE=1/3*AC

如图,在三角形ABC中,AB=AC,E为CA延长线上一点,ED垂直BC于D交AB于P,求证三角形AEF为等腰三角形

证明:∵AB=AC,∴∠B=∠C∵ED⊥BC,∴∠E+∠C=90º,∠BFD+∠B=90º于是∠E=90º-∠C,∠BFD=90º-∠B,∴∠E=∠BFD而∠A

已知P是三角形ABC内一点,连BP,CP.

作辅助线,延长bp到ac,相交点为rab+ar>brcr+pr>cp然后相加ab+ar+cr+pr>br+cp由于ac=ar+crbr=bp+pr带入上不等式所以ab+ac>bp+cp

P是三角形ABC所在平面外一点,A1,B1,C1分别是三角形PBC,PCA,PAB的重心.

过点p作CB,AC,AB的中线,分别交于点D,E,F.A1D=1/3PD,B1E=1/3PE,C1F=1/3PF.连接D,E,F.可得A1BI//DE,A1C1//DF,B1C1//EF;又因为DE/