随机变量 在区间 上服从均匀分布,记 ,求 的概率密度.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:47:27
(1)f(x)=1/(b-a)=1/4P{-0.5
(1)由已知,f(x)=1,(0
做出这个效果很辛苦,
事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).
首先X是连续型随机变量,取任何一个定值的概率都是0,因此X=0和X=1的概率是0,也就没有0和2了.其次,均匀分布的随机变量在某区间取值的概率正比于该区间长度,且总概率为1,因为X分布在[-1,2],
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
f(x)=1/3-2
详细过程点下图查看
X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12证明如下:设连续型随机变量X~U(a,b)那么其分布函数F(x)=(x-a)/(b-a),a≤x≤
密度函数:f(x)=1/(b-a)[a,b]f(x)=0其它x数学期望Ex=∫(a,b)x/(b-a)dx=0.5/(b-a)(b^2-a^2)=(a+b)/2Ex=(a+b)/2方差Dx=∫(a,b
这两个表述的是同一个东西
概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.
f(x)=1/(b-a)P{X(2a+b)/3)f(x)dx=1/3
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X
做好了!希望批评指教.
0.52x+(118-x)*0.33=53