随机变量X-N(0,1) ,Y=X^2 ,则相关系数 =( )
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:51:01
U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,
1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12
首先X-2Y还是正态分布而E(X-2Y)=E(X)-2E(Y)=0-2=-2D(X-2Y)=D(X)+(-2)²D(Y)=1+4×2=9所以X-2YN(-2,9)
N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?
用正态分布特性计算.经济数学团队帮你解答.请及时评价.
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)y≤0时,F_Y(y)=P{Y再问:X的概率密度函数:f_X(x)=1/√(2π)·e^(-x^2/2)...这个是怎么得到的再答:
思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=
N(0,1)表示随机变量X服从期望为0,方差为1的正态分布,即标准正态分布其中N是NormalDistribution的缩写,即正态分布.正态分布的概率密度函数为f(x)=]1/(√2π)σ]*exp
一个线性函数的正常分布或正态分布E(Y)=(1-2X)?=1-2EX=1D(Y)=D(1-2X)=4D(X)=4因此,YN(1,4)
1、cov(x,y)=E(xy)-E(x)E(y)=E(x³)-E(x)E(x²)=02、符号打不出来,总之,就是先求出f(xy),也就是联合密度,然后把min(x,y)乘以联合密
因为X,Y独立所以D(Z)=D(X-2Y)=D(X)+4D(Y)=9+4=13
3D(X+Y)=E[(X+Y)^2]=E(X^2)+2E(XY)+E(Y^2)=1+2×0.5+1=3
根据二维正态分布的性质知:x,y均服从N(0,1),根据正态分布的线性组合还是正态分布,知z服从正态分布下面重点求z的期望与方差E(z)=E(x-2y)=E(x)-2E(y)=0D(z)=D(x-2y
F(y)=P(Y再问:后面那一串上角标是怎么个意思?再答:具体点
N(0,1),y=e^(-x)y>0X的密度函数是fX(x)=1/√2π*e^(-x^2/2)那么FY(y)=P(Y0
下面给出利用特征函数所进行的严格证明.证明:记h_{X}(t)为随机变量X的特征函数(注:记号“h_{X}”中的“_”表示“下标”;下文中的记号“^”表示“上标”,用来表示幂运算,如2^n是2的n次方
一个二维正态分布的边缘分布的和总是正态分布.特别的,两个独立正态分布的和总是正态分布.由X~N(1,4),有2X~N(2,16).由Y~N(2,1),有Y+1~N(3,1).于是E(Z)=E(2X+Y