随机变量x与y独立同分布于b(1,1 4)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:34:17
Y1和Y2不独立的情况下,它们函数的独立性也会受到相应的影响.但是你式子中表达的意思不太清楚,你写的g1g2分别是以x1x2为自变量的函数吗?你后面又问道Y1Y2之间的关系,是要提示它们是随机变量吗?
X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕
建议查看http://zhidao.baidu.com/question/278920940.html
首先应该明白X、Y都服从二项分布,这道题并不难.见图
EX=16*(1/2)=8,DX=16*(1/2)*(1-1/2)=4EY=9,DY=9D(X-2Y+1)=D(X-2Y)=DX+D2Y=DX+4DY=4+4*9=40
设X,Y的分布律分别为X01Y011-pp1-qq(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/
因为X,Y独立同分布且X分布函数为F(x),故Z=max{X,Y}分布函数为:FZ(x)=P{Z≤x}=P{max{X,Y}≤x}=P{X≤x,Y≤x}=P{X≤x}P{Y≤x}=F(x)F(x)=(
题目有问题吧,y用不上了再问:���ǵ�һ�ʣ�再问:�ڶ�����������X��Y�������ͬ�ֲ�U[0,1]����Z=Y+X�ĸ����ܶ�再答:再答:�ڶ��ʻ���Ҫ��再问:�
第一题看不懂,至于第二题,应选B.X,Y服从正态分布则有:P(Y
随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,
Z=max(x,y)当x,y)独立时,F(z)=[Fx(z)]^2-->fz(z)=2fx(z)F(z)E[MAX(X,Y)]=∫2zf(z)F(z)dz(代入标准正态分布密度函数,经分步积分可以算出
∵cov(U,V)=E(U-EU)(V-EV)=E(X-Y-E(X-Y))E(X+Y-E(X+Y))=E(X-EX-Y+EY)E(X-EX+Y-EY)=E(X-EX)2-E(Y-EY)2=DX-DY由
独立同分布,那0么分布函数相同,F(x)=F(y),至于这道题,严格讲B也是正确的,只是表达不同,你说的那道题我看了,A选项应该是[F(z)]^2因为p(maxX,Y)=P(X
解:设随机变量X的密度函数是:f(x),随机变量Y的密度函数是:f(y)因为他们互相独立,所以可以知道他们的联合密度函数:f(x,y)=f(x)*f(y)又f(y,x)=f(y)*f(x)所以f(x,
下面给出利用特征函数所进行的严格证明.证明:记h_{X}(t)为随机变量X的特征函数(注:记号“h_{X}”中的“_”表示“下标”;下文中的记号“^”表示“上标”,用来表示幂运算,如2^n是2的n次方
这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图:
Z=X-Y服从N(0,1).E(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)E(|Z|^2)=E(Z^2)=D(z)=1D(|z|)=1-2/π