零矩n阶方阵AB=O
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:07:48
AB=0|AB|=0|A|*|B|=0|A|=0或|B|=0
可以这么证:设A是N×N的方阵.首先,存在非零列向量X(NX1),满足AX=0,因为A不满秩.其次,存在非零列向量Y(N×1),满足A(T)Y=0,因为A(T)也不满秩(T代表矩阵转置).然后,考虑这
n阶矩阵乘积的秩有不等式r(AB)≥r(A)+r(B)-nAB=0,即有r(AB)=0,代入即得.还有一种想法,B的列向量都是线性方程组AX=0的解.于是AX=0解空间的维数n-r(A)应该≥B的列秩
A的代数余子式为A的n-1阶子式,其满秩故A的秩>=n-1
B的每个列向量都是齐次方程AX=0的解.当B为零矩阵时,AX=0只有零解,所以r(A)=n,B为零矩阵所以r(B)=0此时r(A)+r(B)=n当B为非零矩阵时,AX=0有非零解,所以r(A)
证明:必要性.因为存在一个非零矩阵B,使得AB=O所以B的列向量都是AX=0的解向量所以AX=0有非零解所以|A|=0.充分性.因为|A|=0,所以AX=0有非零解b1,...,bs令B=(b1,..
用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)
D正确.若AX=b有解,则有无穷多解但也可能无解所以D正确
有定理:若AB=0,A和B都不为零,则│A│=│B│=0证明:因为AX=0有非零解B,所以│A│=0同理YB=0有非零解A,所以│B│=0证毕据此,得到一个结论:若AB=0,则A,B至少有一个为0,否
设矩阵B与AB=0右端的零矩阵的列分块分别为B=(β1β2…βn),0=(00…0),由分块矩阵乘法,A(β1β2…βn)=(00…0),(Aβ1Aβ2…Aβn)=(00…0)即β1β2…βn(Ⅰ)是
因为A,B均为n阶方阵且AB=O所以R(A)+R(B)≤n①假设A、B都可逆,则R(A)=n,R(B)=n那么R(A)+R(B)=2n与①矛盾所以A、B中至少有一个不可逆.
假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N
要多说明一点,你取的k是最小的使得A^k=0的自然数k.等等-由于A^(k-1)不恒为O,所以X=O-好像有问题...我想一下.这句话应该是对的,但是我要证明的话要用到Jordan形式...(就是只有
因为AB=0,所以B的每一列都是线性方程组AX=0的解.而根据线性方程组理论,AX=0的基础解系中线性无关的解的个数(或者说解空间的维数)≤n-r(A).而B的列向量组是解空间的一部分,所以B的列向量
因为B行列式不为零,所以B=k*Q1Q2...Qt(Qi为初等矩阵,对应A的初等列变换)由于矩阵经过初等列变换不改变秩,故A经每步初等列变换秩序不变,故r(AB)=r(A)不懂追问
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
A的行列式不为零说明A可逆所以A^(-1)*AB*A=BA即AB与BA相似
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
不一定成立举反例就行了