非齐次线性方程组Ax=b的解的线性组合 是Ax=0的充要条件是组合系数的和等于零
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:31:43
证明:设k1(α1+β)+k2(α2+β)+⋯+km(αm+β)+kβ=0则k1α1+k2α2+⋯+kmαm+(k1+k2+...+km+k)β=0.等式两边左乘A,由已知Aα
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
C.Rank(A)=n因为此时[A1,A2...An]是线形无关组
AX=B有解的充要条件是r(A,B)=r(A)
是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解非齐次线性方程组就有唯一解r(A)
C2a1+b2是AX=b的解b1+b2是AX=2b的解a1+a2是AX=0的解b1-b2是AX=0的解
Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)
有唯一解或者无解.因为r(A|B)>=r(A)=n;
未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷
若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若m
因为r(A)=2所以AX=0的基础解系含3-r(A)=1个解向量故2x1-(x2+x3)=2(1,2,3)^T-(2,3,4)^T=(0,1,2)^T是AX=0的基础解系.而x1=[1,2,3]^T是
错误.若线性方程组AX=B有无穷多解,则它所对应的齐次线性方程组AX=0有无穷多解
若r1,r2线性相关则r1,r2成倍数关系,既有r1=kr2而知道r1-r2为齐次方程的解,r1-r2=(1-k)r2所以有A(1-k)r2=(1-k)Ar2=0与Ar2=b矛盾!,所以两个无关如果A
a,b,d正确.a:Ax=0有仅有0解,A为满秩矩阵,则A的行秩=N,则A的增广阵行秩也为N,则A的增广阵秩为N,由判定定理可得结论;b:Ax=b有无穷多个解,由非齐次判定定理R(A,b)=R(A)<
a=3时有解;2) 1 2 -3 1 &n
有2个解说明A的rank=0,所以\lambda-1,a=-2,通解是(1/2,-1/2,1)'+c(1,0,1)','代表转置.再问:为什么两个不同的解,A的秩就为零?再答:Ax_1=bAx_2=b
-r(A)=r(A)-r(A)
四元非齐次线性方程组Ax=b的秩R(A)=2,所以通解有4-2=2个解向量,方程组有解a,b,c,d所以A(a+b)=2b,A(a-2c)=-b,A(a+2d)=3b那么显然A(a+b+2a-4c)=
应该是A可逆或|A|≠0是非齐次线性方程组AX=b有唯一解的充分必要条件.