顺次连结矩形四边中点所得的四边形是菱形(要求写出已知.求证和证明)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:00:22
是证明:连接AC,BD∵ABCD是菱形∴AC⊥BD∵M是AD中点,E是AB中点∴ME平行BD,ME=1/2BD同理可得NF‖BD,NF=1/2BD所以四边形EFNM是平行四边形因为MN‖AC.AC⊥B
顺次连接等腰梯形四边的中点所得的四边形是菱形已知:等腰梯形ABCDE.F.G.H分别是AD,AB,BC,CD的中点求证:四边形EFGH是菱形证明:连接AC,BD因为ABCD是等腰梯形所以AC=BD因为
选B,分析:由中位线定理易得EH、FG都平行等于BD的一半,故可得四边形EFGH为平行四边形,从它的对角线互相垂直,则矩形可证.
在菱形ABCD上取各边AB,BC,CD,DA中点为E,F,G,H,连接EF,AC,EH,BD,因为E,F是中点,所以有EF向量=1/2(AB向量+BC向量)=1/2(AC向量),同理得FG向量=1/2
知:菱形ABCDABBCCDDA的中点分别为EFGH因为EH//BD且等于1/2BD又FG//BD且等于1/2BD(根据三角形中线原理)所以EH=BD所以EFGH为平行四边形又因为AC垂直BD所以EF
∵四边形A1B1C1D1是矩形,∴∠A1=∠B1=∠C1=∠D1=90°,A1B1=C1D1,B1C1=A1D1;又∵各边中点是A2、B2、C2、D2,∴四边形A2B2C2D2的面积=S△A1A2D2
是菱形理由是:连接AC、BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=12AC,GH=12AC,EH=12BD,GF=12BD∵等腰梯形ABCD中AD∥BC,AB=CD,∴AC=BD∴
A、顺次连接平行四边形的四边中点得到的四边形是平行四边形,平行四边形不是轴对称图形,是中心对称图形,故正确;B、顺次连接矩形的四边中点得到的四边形是菱形,菱形是轴对称图形,是中心对称图形,故错误;C、
连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH
如图:∵四边形ABCD是正方形∴∠A=∠B=90°,AD=AB=BC=CD∵E,F,G,H是正方形各边的中点∴AE=AF=BF=BG∴△AEF≌△BFG,∠EFA=∠GFB=45°∴∠EFG=90°,
已知:菱形ABCDABBCCDDA的中点分别为EFGH因为EH//BD且等于1/2BD又FG//BD且等于1/2BD(根据三角形中线原理)所以EH=BD所以EFGH为平行四边形又因为AC垂直BD所以E
如图,已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点,求证:四边形EFGH是菱形.证明:连接AC、BD.∵E、F分别是AB、BC的中点,∴EF=12AC.同理FG=1
20cm∵矩形对角线相等又有中点则根据中位线的性质可得每两个中点的连线等于对角线的一半∴4×(10/2)=20OK了
连接AC,BD,∵四边形ABCD是等腰梯形,∴AC=BD,∵E、F、G、H分别是AD、AB、BC、CD的中点,∴EF=12BD,EH∥AC,EH=12AC,FG∥AC,FG=12AC,∴EH=EF,E
已知:矩形ABCD,E、F、G、H分别是AB、BC、CD、AD中点.求证:四边形EFGH是菱形.证明:∵E是AB中点 F是BC中点∴EF‖AC EF=1/2
看看这个吧.http://www.qiujieda.com/math/9020317
画一个菱形ABCD,连接对角线AC,BD,连接各边中点E,F,D,G.∵E是AB的中点,F是BC中点∴BE/AB=BF/BC=1/2又∵∠FBE=∠FBE∴△BEF∽△BAC∴EF‖AC同理GD‖AC