13.若D是由和y=4x围成 ,求D的面积.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:46:32
13.若D是由和y=4x围成 ,求D的面积.
设平面区域D由y = x ,y = 0 和 x = 4 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y

二维随机是服从均匀分布的,所以根据公式知道:f(x,y)=1/8(D区域面积的倒数)所以X的边缘分布为:∫(0,x)1/8dy=x/80

求二重积分ff下标D (1-x^2-y^2)的绝对值dxdy,其中D是由y=0,y=X,和x^2+y^2=1在第一象限围

注意到积分区域,1-x^2-y^2大于等于零. 利用极坐标可得 再问:我不知道你怎么想的啊,说明白点撒。再答:积分区域内,1-x^2-y^2大于等于零。所以绝对值没有用。还是...

求教一道高数题,设D是由曲线y=√x,x+y=2和x轴所围成的平面区域,求D绕y轴旋转一周而成的旋转体的体积V

先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,

计算二重积分∫∫D dxdy/根号4-x²-y² 其中D是由圆周x²+y²=4围

原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

计算二重积分∫∫3x/y² dxdy ,其中D由x=2,y=1/x和y=x围成.

先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的

∫∫(X+Y)³dxdy,积分区域D是由X=√(1+y²)与X+√2*y=0和X-√2*y=0围成

虽然积分区域是关于x轴对称的.但是被积函数(x+y)³却不是对称的.所以不能用对称性解吧~~假设有两个四面体,虽然它们的底都是同样的三角形,但是它们的高不一样,所以体积也未必一样.所以∫∫_

求积分I= ∫ ∫根号(x^2+y^2)dxdy积分区域是D,其中D由y=x与y=x^4围成.用极坐标的方法.

y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c

计算∫∫D (x+6y)dxdy,其中D是由y=x,y=5x,x=1围成的区域.

∫∫D(x+6y)dxdy=∫dx∫(x+6y)dy=∫dx(xy+3y²)|=∫(5x²+75x²-x²-3x²)dx=∫(76x²)dx

求二重积分∫∫Dsiny/ydxdy,其中D由y=x^(1/2)和y=^x围成.

曲线y=√x与直线y=x的交点为(0,0)和(1,1)于是积分区域D={(x,y)|y²≤x≤y,0≤y≤1}从而原式=∫[0,1]siny/ydy∫[y²,y]1dx=∫[0,1

求二重积分:∫∫((根号x)+y)dxdy,其中D是由y=x,y=4x,x=1所围成的平面区域

∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2

∫∫arctan(y/x)dxdy其中D是由y=√(4-x²)及三直线y=x,y=0,x=1围成

被积区域如下图以极坐标表示,设x=r·cosθ,y=r·sinθ则被积区域可表示为,0≤θ≤π/4,0≤r≤1/cosθarctan(y/x)=θ则有再问:我感觉积分区域应该是右下侧那部分,1/cos

计算二重积分∫∫xydxdy ,其中积分区域 D是由y=x ,y=1 ,和x=2 所围成的三角 形域.D

X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x