平面薄片所占区域D是由x+y=2,y=x和x轴所围成,他的面密度p(x,y)为(x,y)到原点距离的平方,求薄片质量M.
平面薄片所占区域D是由x+y=2,y=x和x轴所围成,他的面密度p(x,y)为(x,y)到原点距离的平方,求薄片质量M.
平面薄片所占的闭区域D由直线x+y=2,y=x,y=0 所围成,它的面密度u(x,y)=x+2y.
求均匀薄片的质心,薄片所占闭区域为D,D是由y=1-x^2与y=2x^2-5所围成的闭区域,
设平面薄皮所占的闭区域p由y=(1-x^2)^(1/2);y=0所围成 求该均匀薄片的质心
高数二重积分题!一个平面薄片所占的区域由不等式│x│+│y│≤1所确定,其上每一个点的面密度为f(x,y)=│x│+│y
设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概
∫∫e^(y-x/y+x)dxdy,其中d是由x轴,y轴和直线x+y=2所围成的闭区域
求二重积分:∫∫((根号x)+y)dxdy,其中D是由y=x,y=4x,x=1所围成的平面区域
求教一道高数题,设D是由曲线y=√x,x+y=2和x轴所围成的平面区域,求D绕y轴旋转一周而成的旋转体的体积V
设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密
求二重积分e(x/y)dxdy,其中D是由y^2=x,x=0,y=1所围成的区域.
已知d是由圆x^2+y^2-2y+x=0,所围 平面区域,求d的面积,用积分做