sin 是收敛函数吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:27:07
手边有没有“高等数学”?那上应该有
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
函数一般不说收敛,只说当x有某种变化趋势时,f(x)是否有极限.数列或者级数,才喜欢说收敛.“收敛”和“有极限”是一个意思,完全等价.你想问的是不是:“收敛一定有界,有界是不是一定收敛呢?”回答是:收
假设收敛,可以设a=limsinn,则limsin(n+2)=a.而sin(n+2)-sinn=2cos(n+1)sin1,得lim2cos(n+1)sin1=a-a=0,则limcos(n+1)=0
你没表达式怎么叫人家给你回答,谁知道你这个函数在你没画出来的地方是个什么样子啊
这很好理解啊,因为有极限,所以,后面的项基本上都等于极限(差别可以无限小),所以后面的项有界;而前面的项总是有限项,有限个数当然有界,所以,整个数列就有界啰.(其实高数书中的证明也是这个思路)
收敛+发散=发散收敛+收敛=收敛发散+发散=可能收敛,可能发散
收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性,也就是说存在极限的函数就是收敛函数.从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛
有界函数均收敛~有界函数即是不发散,不发散也就是收敛~
无穷大和有界函数乘积不一定是无穷大.sinx是x→0时为0,应该收敛再问:为什么?再答:0乘以无穷大为0.再问:0是有界函数?再答:y=0,是有界的呀,就是与x无关,轴线就相当于x轴.....再问:哦
例如数列{(-1)^n}有界,但是极限不存在.
高等数学书上有啊,看看书吧,呵呵.
"收敛函数"这个并不是什么规范的术语,你先给一个定义.如果你想说的是在某种趋势(比如x->x0或者x->oo)下有极限,那么导函数是不一定具有这种性质的,比如说x->0时xsin(1/x)极限为0,但
由|sin(pi/4^n)|
利用根式判别法,当n趋于无穷大时,(2^n+n)/(3^n-n)的n次方根的极限为2/3
就X不断变大时(也包括向反方向变小到负无穷),有极限,也就是近似等于一个常数.举个例子1/X,在X很大时,1/X可以看作等于01/X+1可以看作=1,这种X等于无穷的情况,而函数等于常数就是叫收敛.
就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性.从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛
1.如果f可积,那么因为在一个周期上,所以f^2可积.另外对于f,bn=1/sqrt(n),于是有∑bn^2发散,而由parseval等式可知这是不可能的.2.1)级数正规收敛,所以一致收敛,所以函数
都不是充要条件,数列收敛一定有界,但有界数列不一定收敛,例如an=(-1)^n是有界的,但不收敛.对于函数来说,不但有界不一定收敛,而且在某点收敛的函数只具有局部有界性,即函数在x0点收敛只能保证在x
数列收敛,极限为0函数不收敛