高数:求曲线z=xy 5,xyz 6=0在点(1,-2,3)处的切线及法平面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:14:44
高数:求曲线z=xy 5,xyz 6=0在点(1,-2,3)处的切线及法平面
高数 求曲线x=2t,y=t²,z=t³在点(2,1,1)处的法线与切平面

切线与法平面?可以看到,该点处,参数t=1,在该点处将x,y,z分别对t求导可得切线方向向量为(2,2,3),这也是法平面的法向量.切线:(x-2)/2=(y-1)/2=(z-1)/3;法平面:2*(

z=f(x+y+z,xyz),求x对y偏导,

首先要确定终变为xz设u=x+y+z,v=xyz两边对x求偏导:0=fu*(1+δy/δx)+fv*z*(x*δy/δx+y)解出δy/δx即可再问:帅哥(美女),过程的确是这样,可是我不明白的是为什

已知x+y-z/z=x-y+z/y=-x+y+z/x,且xyz不等于0,求分式[(x+y)(x+z)(y+z)]/xyz

(x+y-z)/z=(y+z-x)/x=(z+x-y)/y[x+y]/z-1=[y+z]/x-1=[z+x]/y-1[x+y]/z=[y+z]/x=[z+x]/y设[x+y]/z=[y+z]/x=[z

若xyz不等于0,且满足(y+z)/x=(x+z)/y=(x+y)/z,求(y+z)(x+z)(x+y)/xyz的值

设(y+z)/x=(x+z)/y=(x+y)/z=k;y+z=kx;x+z=ky;y+z=kx;2(x+y+z)=k(x+y+z);k=2或x+y+z=0;所以,(y+z)(x+z)(x+y)/xyz

曲线z=3和y方+z方-2x=0在xoy面的投影曲线方程高数

把z=3代入y^2+z^2-2x=0就行了……得到的曲线是:y^2-2x=9这个你自己想象一下就知道了,曲面z=3与曲面y^2+z^2-2x=0相交得到切线,而曲面z=3与xoy面是平行的

以知xy=-2,z=4,求(xyz)^3÷(xyz^2)的值

16再问:我要过程再答:=x^3y^3z^3/xyz^2=(xy)^2z=16

大一高数问题多元函数求导法则 W=f(x+y+z,xyz) aW/aX=f1+YZf2 aW/aZ=f1+XYf2 求a

错了,二阶混合偏导,是在一阶偏导的基础上继续求偏导的,不能相乘的.此题应这样:e^2W/(ez*ex)=e(eW/ez)/ex=f11*+f12*yz+xyf21+xyf22*yz不知道对否

若xyz不等于0,且(y+z)/x=(z+x)/y=(x+y)/z,求(y+z)(z+x)(x+y)/xyz的值?

令(y+z)/x=(z+x)/y=(x+y)/z=t∴y+z=xt,z+x=yt,x+y=zt三式相加得:2(x+y+z)=(x+y+z)t∴(2-t)(x+y+z)=0∴2-t=0或x+y+z=0若

高数 求曲线在xoy面上投影的曲线方程 x^2+y^2+z^2=9 x+z=1 为什么我和答案不一样?

你的答案是对的,参考答案是错的.显然该曲线在xoy面上的投影是不过原点的,而参考答案的方程有(0,0)的解,过原点.

高数 求曲线在xoy面上投影的曲线方程 x=cosθ y=sinθ z=2θ 答案我自己可以猜到

θ=z/2.故有x²+y²=cos²(z/2)+sin²(z/2)=1,即表达式为x²+y²=1.

已知x+y+z=a 求:xyz的最大值.

由基本不等式:3√(xyz)≤(x+y+z)/3(当且仅当x=y=z时,取等号)所以:(xyz)≤[(x+y+z)/3]^3(xyz)≤[a/3]^3=a^3/27所以,当x=y=z时,xyz有最大值

己知x,y,z都是非零有理数,且满足|x|/x+|y|/y+z/|z|=1,请你求xyz/|xyz|的值.求因为所以?

因为|a|/a不是等于1就是-1,故|X|/X+|Y|/Y+|Z|/Z=1代表其中XYZ中有两个大于0,一个小于0故XYZ/|XYZ|=-1

高数,x²+y²+z²=1 z=2x²+y²,求曲线在XOY平面的投影

求那个面的投影方程,不含z的面就消去z,缺哪个就消那个.确实是4次方.您不要担心自己算错了,方法是正确的.

高数--柱面方程分别求母线平行于X轴及Y轴而且通过曲线{2x^2+y^2+z^2=16和x^2+z^-y^2=0的柱面方

求母线平行于X轴的柱面方程,只须消去两个方程中的x,得柱面方程为:3y^2-z^2=16求母线平行于y轴的柱面方程,只须消去两个方程中的y,得柱面方程为:3x^2+2z^2=16

x+y+z=1 求xyz/(x+y)(y+z)(z+x)的最大值

x+y大于等于2倍根号下xy同理x+z大于等于2倍根号下xzz+y大于等于2倍根号下zy所以(x+y)(y+z)(z+x)大于等于8xyz当取到8xyz时分数值最大为1/8此时x=1/3y=1/3z=

高数曲面一小问题求曲线{y^2=6-z;x=0}绕z轴旋转所得的旋转面S的方程?为什么是x^2+y^2=6-z啊?

绕x轴旋转,则旋转面上的每一个点(x,y,z)满足距z轴的距离为x^2+y^2的条件,满足该条件的点都在这个曲面上.你可以任意从该线上选一个点绕z轴旋转,从点推面

x,y,z是素数,x^y+1=z,求xyz=?

x=2,y=2,z=5,xyz=20解法:首先x,y是素数,所以x^y大于1,则z=x^y+1大于2,且它是素数,所以z必是奇数(只有2是偶素数),所以x^y必为偶数,所以x必为偶数,所以x=2,题目

x:y:z=2:3:4且x+y+z=18求xyz

x:y:z=2:3:4=4:6:8x+y+z=18x=4y=6z=8xyz=4x6x8=192

方程组X:Y:Z=4:7:8,X+Y+2Z=54 求XYZ

设单位为a,则X=4a,Y=7a,Z=8a所以4a+7a+2*8a=54a=2则X=8,Y=14,Z=16则XYZ=8*14*16=1792

已知三个数x,y,z,满足xy/x+y=-2,yz/y+z=4/3,zx/z+x=-4/3,求(xyz)/(xy+yz+

解题思路:本题的关键是将三个方程两边取倒数,化简后分别将方程等号左边和右边相加,得到1/x+1/y+1/z的值,最后将要求的分式化简,把1/x+1/y+1/z的值带入即可。解题过程: