Sn是等差数列an的前n项和.S3 S6=1 3,则S6 S12等于?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:41:36
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
证明an=Sn-S(n-1)=100n-n^2-[100(n-1)-(n-1)^2]=100n-n^2-[100n-100-(n^2-2n+1)]=100n-n^2-(-n^2+102n-101)=1
答案为ASn=((a1+an)/2)*nan=a1+(n-1)d根据上式得出:Sn=(2a1+(n-1)d)*n/2=a1*n+n方*d/2-n*d/2limSn/n方=lim(2a1*n+n方*d-
Sn=[(a1+a1+(n-1)d]*n/2=[2a1+(n-1)d)]*n/2Sm/m={[2a1+(m-1)d)]*m/2}/m=a1+(m-1)d/2Sn/n=a1+(n-1)d/2Sp/p=a
因为Sn-Sn-1=n^2-3n-{(n-1)^2-3(n-1)}=2n-4.又由an=Sn-Sn-1,所以an=2n-4,最后还要验证一下,当n=1时,S1=a1,符合题意.d=an-an-1=2易
an+2Sn*Sn-1=0其中an=Sn-Sn-1代入上式:Sn-Sn-1+2Sn*Sn-1=0a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:1/Sn-1-1/Sn+2=0即:1
由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn
a2=a1qa8=a1q^7a5=a1q^42a8=a2+a52a1q^7=a1q+a1q^42q^6=1+q^32q^6=1+q^32q^6-q^3-1=0(2q^3+1)(q^3-1)=0q^3=
证:n=1时,a1=S1=3+2=5n≥2时,Sn=3n²+2nS(n-1)=3(n-1)²+2(n-1)an=Sn-S(n-1)=3n²+2n-3(n-1)²
(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1
an=sn-s(n-1)
S1/a1=1S2/a2-S1/a1=(2+d)/(1+d)-1=d/(1+d)S3/a3-S1/a1==(3+3d)/(1+2d)-1=(2+d)/(1+2d)2*d/(1+d)=(2+d)/(1+
n=1时,a1=S1=a+bn≥2时,Sn=a×n²+bnS(n-1)=a×(n-1)²+b两式相减得:an=Sn-S(n-1)=2a×n-a∴a(n-1)=2a×(n-1)-a∴
首先:在等差数列{an}中,有如下性质:若m+n=p+q,则am+an=ap+aq因1+(2n-1)=n+n.所以有a1+a(2n-1)=2an故S(2n-1)=(2n-1)(a1+a(2n-1))/
由题意可得S13S7=13(a1+a13)27(a1+a7)2=13(a1+a13)7(a1+a7)=13×2a77×2a4=137×a7a4=137×2=267.故答案为:267
a3=a1*q^2;a9=a1*q^8;a6=a1*q^5;因为a3,a9,a6是等差数列,所以,2a9=a3+a6.化简,2q^9=q^3+q^6.s3+s6=a1*(1-q^3)/(1-q)+a1
因为这样求得的d只能保证2a2=a1+a3,也就是前3项成等差数列,并不能保证3项之后.可以以较为普遍的情况来分析.
Sn=n(A1+An)/2设Bn=Sn/n=(A1+An)/2Bn-B(n-1)=(A1+An)/2-[A1+A(n-1)]/2=[An-A(n-1)]/2=d/2=常数∴{Sn/n}是等差数列
由题意,S9-S3=S6-S9而S9-S3=A4+...+A9S6-S9=-(A7+A8+A9)而(A4+A5+A6)+2(A7+A8+A9)=0A3(Q+Q²+Q²)+2A6(Q
证::n=1,a1=s1=4n>1an=Sn-Sn-1Sn=n^2+3nSn-1=(n-1)^2+3(n-1)an=2n+2经验证n=1满足通项n>1an-an-1=2,由等差数列定义可知,数列{an