spss如何减少sig值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:29:12
spss如何减少sig值
SPSS多元线性回归 怎么看T检验?哪个值是p值,也就是sig

要看每一个自变量的sig是否小于0.05,只要有一个不满足,则应选择STEPWISE方法,重新计算.

用SPSS做回归分析,得到的t值和sig值都是空白,怎么回事?

因为你不会spss操作,但是在那里乱在点我经常帮别人做这类的数据统计分析的再问:会不会是数据有问题造成的呢

SPSS分析结果相关系数很小,但sig值很小,怎么理解呢?

看sig的值小于0.05,甚至是小于0.01,说明两者之间的确存在显著的相关,只不过相关值不大罢了,就这么说就好了再问:谢谢您的热心回答。可是我觉得如果说两者之间存在显著的相关,那相关系数应该很大啊为

二因素方差分析:如果SPSS的ANOVA表中的两个主效应sig都小于0.05,但交互作用的sig大于0.05,那要如何分

你可以再作一下“轮廓图”看看,进一步分析为何交互作用无显著差异.

在SPSS软件中SIG值有什么含义?要怎么使用?

sig是显著性指标,一般大于0.05拒绝原假设,否则接受原假设,一般我们都是期望拒绝原假设,少数情况我们希望接受原假设,所以sig就是判断的依据.

SPSS中,sig值是0.055,可以接受吗?

一般来说,以0.05作为显著标准,也就是说这个sig并没有达到显著水平.但是还是得考虑你的使用环境.另外,增加被试数目等等方法常常能够有效的提高显著水平.

spss回归分析中 模型的 常量 sig值高于0.05 这个回归还有效么?

常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:

SPSS独立样本检验中 Sig.(2-tailed) 和Sig.哪个是P值

前者是皮尔逊双侧检验的概率,所以选前者.具体选择单侧还是双侧,请参考以下标准:A.甲乙两个总体有差别时,甲高于乙或乙高于甲的可能性都存在,则选双侧检验B.在根据专业知识,只有一种可能性,则选单侧检验C

SPSS中sig是0.001

置信水平是人为规定的,通常选择0.05或者0.01,在双侧检验中,如果sig小于置信水平的一半则拒绝零假设,如果sig大于置信水平的一半则接受零假设.在单侧检验中,sig小于置信水平则拒绝零假设,大于

spss的正态分布检验怎么看sig值 没有写着sih值 谢

最后一个渐近显著性就是sig值,你这是汉化版的,没有显示sig值

spss中已知T值如何求sig值?

选择“转换”—“计算变量”然后在计算表达式中输入PDF.T(a,b),目标变量随便取个名字就ok,运算结果存储在目标变量那儿.其中a代表T值,b代表T分布的自由度.

spss如何判断模型有较好的拟合度?是看R2么,还是sig.我用软件计算的时候sig一栏是空的

R2和sig都可以,精度不一样而已.往往可以同时参照这两个,另外还有P值,综合起来考虑.sig为空,说明你的步骤有问题,数据没有计算出来.

SPSS的T检验结果如图 请问sig值和t值分别是什么

t值表示变量显著性检验的t统计量,sig.则是系统计算出的相应显著性统计量出现的概率.对于x变量,第二张表,F检验sig.值0.093(假设理论显著性水平α为0.05)表明x变量不具有方差齐性,因此t

SPSS中独立样本T检验中,方差 levene的结果如何看?如何根据F值,sig值判断啊?

levene的结果主要出现在方差分析和独立样本T检验中,用于考察方差是否齐性.sig值是根据F值计算出来的,因此只要看sig值就可以推断方差是否齐性.一般情况下,只要sig值大于0.05就可以认为方差

spss 回归(线性)分析,sig值 太大怎么办啊?

说明变量没有意义哦,你可以选几个变量纳入进去分析试试再问:先做“要因分析”,然后以分析出的“要因1,2,3,4”为变量进行回归分析。结果,“要因1”sig为零,“要因2,3,4”sig值却都严重偏大!

利用spss进行独立样本t检验,结果得到t和sig值.那么接下来论文中如何表述差异显著还是不显著.

因为F检验的sig值>0.05所以齐方差性满足,只看第一排的T值,因为T检验的sig值=0.004再问:我知道结果表示什么意思。我会分析结果。现在我意思是说,这个结果如何在论文中描述,要是作图怎么表示

SPSS回归系数 SIG是什么?

在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01

用SPSS做对数正态分布检验,sig值>0.05或

sig就是传说中的P值.SPSS的K-S检验包括正态分布、均匀分布、泊松分布和指数分布四项,不能直接做对数正态分布检验,只有在你的原始数据做了对数转换之后你才能使用K-S检验测试是否服从正态分布.K-

SPSS中,R方0.94,sig值0.45,

p值大于0.05,所以接受原假设.再问:是说,我的假设正确,但是不用具有统计上的显著性是吗?再答:是说明在95%的显著性水平下不显著。再问:貌似大于0.05是拒绝假设吧??再答:是的,大于0.05,是