spss效度结果分析KMO
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:41:46
你完全不懂因子分析吧,不存在共线性是不能做因子分析的,kmo大小无所谓的,79%已经很大了再问:是不太懂。不是说KMO要70%以上才算合格吗?再答:只要这个检验p
第二个表说明拟合度,0.996,接近1,说明模型拟合不错;第三个表看F值就好,相当大,在95%甚至99%置信度下显著;第四个表说明自变量X(营业收入)系数为0.891,并且是在95%甚至99%置信度下
直接在因素分析里做analyze——Datareduction——Factor并在descreptives里选择KMO就可以了
显著性(双侧)也即P值为0.028
R平方就是拟合优度指标,代表了回归平方和(方差分析表中的0.244)占总平方和(方差分析表中的0.256)的比例,也称为决定系数.你的R平方值为0.951,表示X可以解释95.1%的Y值,拟合优度很高
(1)中F伴随的p值小于0.001,是怎么看出来的?(2)常数在0.005下显著,以及x1在0.001下显著是怎么看出来的?就是看最后一列的sig值,就是P值.它小于显著性水平,比如0.05,就显著.
那些和其他变量相关性都很小的变量就是解释方差很小的变量,或者从旋转载荷矩阵表上来看,那些变量在各个成分上的载荷都小于0.5,就是解释方差很小的变量,应该剔除,这样就可以提高KMO值了.
KMO值是由你的数据算出来的,不是所有的数据都适合做主成分分析.只有KMO值只有0.5说明你的数据样本不适合做主成分分析,下面做的一切都是不合理的.KMO值不能提高,除非你换一组数据.
不可以的如果要尊重事实的话,你数据出来就是这样的结果,为什么要拒绝这样的结果呢?
仅作主成分分析是不用看KMO值的,提取主成分中解释方差较大的变量,构建新的指标体系,然后在试图用因子分析,另外注意,主成分分析一般不用来赋权!
是说这个矩阵不是正定的,我知道你可能还是不明白,我帮你查了很多资料,正定矩阵意思是说数据特征的特征值不是都大于0的,因此我推测你数据中可能存在问题,有负的特征值,怎么改数据,我还不清楚,我还得学习学习
如果不相关,就没有必要用因子分析,因子分析只在高度相关时才能使用.正确的选择方法才是关键.再问:写论文题目早就定下来了,没法改了,而且我找了好几份参考的论文,也都是用因子分析法分析跟我一样的问题的,我
一看判定系数R方,本例中,R方=0.202,拟合优度很差.一般要在0.6以上为好.至少也在0.4以上.二看系数估计量的sig值,其中,独董规模的sig=0.007,小于0.05,说明该变量对因变量有显
KMO是做主成分分析的效度检验指标之一,以前的文献中写说,KMO在0.9以上,非常合适做因子分析;在0.8-0.9之间,很适合;在0.7-0.8之间,适合;在0.6-0.7之间,尚可;在0.5-0.6
主要看“显著性”的值P,当P>0.05时,表示两变量间不相关.故:1与2相关,1与3、4均不相关其余类推.
这是一个两个变量之间的相关性分析结果.使用的参数是Pearson指数.Pearsoncorrelation是一个相关系数,它指出了两个变量之间相关的亲密程度和方向.这个数值的绝对值越大越说明两个变量的
你这是单侧检验啊,你做的对不对?
效度分为很多,你说的应该是结构效度因子分析有标准步骤,不是说你这么做因子分析就不好,他那么做因子分析就好需要对哪些变量做因子分析,要根据你的目的来决定kmo是必须要看的我经常帮别人做这类的数据分析
你少了一个表,输出结果的第一张表就是“输入/移去的变量”,这张表里面就是保留和移除的变量.模型汇总:这个看R方,数值最大最接近1的就是拟合度最好的模型.Anova:这个看Sig,
因子分析前,首先进行KMO检验和巴特利球体检验,KMO检验系数>0.5,(巴特利特在spss中的因素分析时有关于bartlet球形检验的选项,如果sig值小于0.05,则