stata回归结果t值为负
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:05:25
三个变量g,m,s和常数项;其中只有size显著,可以看其t值和p值,p值小于0.05,所以其在95%置信度下显著.拟合度较低,查看adjR-squared,越接近1拟合度越高,此模型拟合度较差.模型
你先生成虚拟变量,然后把那些虚拟变量作为自变量加入到命令中,和普通变量做回归是一样的.
T值=回归系数除以回归系数标准差回归系数标准差一定是正的,所以T值由回归系数决定
负值是对照组和研究组的数据进行比较得出的值.
有helpestat
木有一个变量是显著的……所有变量的p值都好大的说~整个模型的p值也很大……结论就是这个模型本身统计不显著,各个变量也不显著.看回归分析结果,你先看右上角那个prob>F,那个是对整个模型的检验,如果这
抛开数据本身和模型的问题,但看回归结果的话,第一个结果比第二个好:一是模型整体的拟合优度即adj-Rsquared比较高,二是显著性水平即P值比较低.再问:请问一下表格里的t值代表什么?还有P>|t|
这种model的R^2的值已经完全没有讨论的意义了,只要F值是显著的significant的就可以了.你的结果中,independentvariables当中,只有power(5%显著),Edu(1%
结果的前两行表示模型的类别,LZ采用的为randomeffect随机模型,截面变量:province,样本数目310.群组数目31,也就是每组10个观测值.3-5行表示模型的拟合优度,分别为withi
在stata中有个metareg命令,好像可以对连续变量进行回归分析. 附件中是一篇pdf文档,主要介绍stata中关于meta分析的命令.跟大家分享一下. 里面在提到metareg命令时,列举了
可以估计X=某一值时的Y.R-squared高,F(1,58)拒绝模型整体不显著,x的t检验说明系数显著
1.写出拟合方程Y=0.0439636-0.1104272ret+0.3015505drret+0.0003205vr+0.0130717drvr+0.0061625retvr+0.0501226dr
F检验又叫方差齐性检验.从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性.若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验
没有一个变量是显著的讲土点就是做的毫无意义
恩,数据发过来吧我经常帮别人做这类的数据分析
我晕,白写了啊,刚才不小心改掉了.首先说觉得你这个方程回归的不好,R系数太小,显著性不好.F值应该大于该自由度下查表的值才行,所有的t值大于查表得到的值,这样从方程到参量全部显著.不过受制于原始数据,
变量名:year(年份)industry(行业),其他的都是自己定义的,x,y,yp,e,r,c,其他的都是build-in的命令.
这是手动的break了啊,你按到break或者是ctrl+break了吧再问:应该没有吧,是不是数据太多了啊?大约30000个数据,后来变成1000个数据就可以了,为什么呀再答:mem设置太小了吧,加
回归有很多种呀,你要做哪种回归?如因变量y对自变量x的线性回归:regressyx因变量y对自变量x1、x2、x3的线性回归:regressyx1x2x3因变量为二分变量的y对自变量x1、x2、x3的
t值等于系数除以标准误,t值和p>|t|是一个意思,都是看回归结果是否显著,p>|t|越小越显著,对应的是10%、5%、1%水平显著.若是零,说明,在1%水平上都显著.