un>0,级数ΣUn收敛,且{nUn}单调递减,求证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:20:10
un>0,级数ΣUn收敛,且{nUn}单调递减,求证
若级数Un收敛,Un^2是否敛散性如何?

果断收敛啦用比较判别法很容易得出结论的

如果级数Un收敛,1/Un的敛散性?

(级数收敛则通项必趋于零)Un收敛则Un趋于0,则1/Un不可能趋于0(否则1=Un*(1/Un)趋于0,矛盾),所以1/Un一定发散

正项级数un,vn收敛 求证 级数(un+vn)^2收敛 高手来 !

若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un

级数Un收敛,判断Un^3的敛散性

如果是u[n]是正项级数,那么由比较判别法易得u[n]³收敛.如果不加限制,那么u[n]³未必收敛,可以构造例子如下:u[1]=1,u[2]=u[3]=-1/2,u[4]=1/&#

请教题高数级数证明题设级数Eun和Evn均收敛,且un

正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两

设级数∑un收敛,证明∑(un+un+1)也收敛

这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

若级数Un收敛于s 则级数(un+un+1)收敛于

由   ∑(n>=1)u(n)=s,可得   ∑(n>=1)[u(n)+u(n+1)]  =∑(n>=1)u(n)+∑(n>=1)u(n+1)  =2s-u(1).再问:(Un+Un+1)=(u1+u

若级数∑Un收敛于S,级数∑【un+un+1】则收敛于

∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始

级数un收敛 那么级数un^2-un+1^2收敛吗

发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

设级数∑(n=1)Un收敛,且∑Un=u,则级数∑(Un+U(n+1))=?

∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可

一个级数ΣUn收敛,怎么证明它的奇数项ΣU2n-1也收敛?

因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.

级数un是收敛还是发散

这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

设数列un收敛于S,则级数un+1-un收敛于

lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0