x cos^3xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:14:12
∫(sin2x)/(sin²x)dx=∫(2sinxcosx)/(sin²x)dx=2∫cosx/sinxdx=2∫(1/sinx)d(sinx)=2ln|sinx|+C_____
∫xcos(3x)dx=xsin(3x)/3-1/3∫sin(3x)dx(应用分部积分法)=xsin(3x)/3+cos(3x)/9+C(C是积分常数)∫xln(x+1)dx=x²ln(x+
∫sin^3xcos^2xdx=-∫sin^2xcos^2xdcosx=-∫(1-cos^2x)*cos^2xdcosx=-∫(cos^2x-cos^4x)dcosx=(1/5)*cos^5x-(1/
原积分=∫(sinx)^2d(cosx)=∫(1-(cosx)^2)d(cosx)=cosx-1/3(cosx)^3+c
先积化和差sin3xsin5x=0.5(cos2x-cos8x)∫sin3xsin5xdx=∫0.5(cos2x-cos8x)dx=0.25sin2x-0.0625sin8x+c
=(1/3)∫d(3x^2-1)/√(3x^2-1)=(2/3)√(3x^2-1)+C
f'(x)=x'cos3x+x*(cos3x)'=cos3x+x(-sin3x)*(3x)'=cos3x-3xsin3x
sin^2(a+π)Xcos(π+a)Xcot(-a-2π)/tan(π+a)Xcos^3(-a-π)=sin^2a(-cosa)(-cota)/tana(-cos^3a)=-sinacos^2a/s
1、-1/9*(1+3*x)*e^(-3*x)+C2、1/16*cos(4*x+3)+1/16*(4*x+3)*sin(4*x+3)-3/16*sin(4*x+3)+C3、x*(-1/2*cos(x)
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
∫sec^2×3xdx∫sec^2×3x*3/3dx1/3∫sec^2×3xd(3x)1/3tan3x+c
这题方法有很多,你可以把cos^2x换成1-sin^2x4sin^2xcos^2x=4(sin^2x-sin^4x)sin^2x和sin^4x积分是有公式的.但是一般人估计也记不得,所以方法二:为了方
(1)原式=∫[x^(2/3)+6x^(1/3)+9]dx=3/5*x^(5/3)+9/2*x^(4/3)+9x+C(2)原式=∫(4x^3-4x^2-x)dx=x^4-4/3*x^3-1/2*x^2
第一个是tan^3xsecxdx(sec^2x-1)tanxsecxdxsec^2x-1dsecx积分结果是sec^3x/3-x+c第二个同样方法cot^4x/cscxdx(cscx^2-1)^2/c
∫arctan(1/x)dx=∫(x)'arctan(1/x)dx=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx=xarctan(1/x)+∫1/(x+1/x)d
∫xcos(x/3)dx=3∫xdsin(x/3)=3xsin(x/3)-3∫sin(x/3)dx+C=3xsin(x/3)+9cos(x/3)+CC为任意常数
再答:再答:第一个错了再问:不好意思,我把问题打错了,中间是除不是乘。您再看一眼,求指导!再答:
∫sin³xdx=-∫sin²xdcosx=-∫(1-cos²x)dcosx=-cosx+1/3cos³x+c
1.∫(x√x+1/x^2)dx=∫x^(3/2)dx+∫x^(-2)dx=(2/5)x^(5/2)+(-1)x^(-1)+C=(2/5)x^(5/2)-x^(-1)+C2.∫xe^xdx=∫xd(e