x 服从n(0,1),y=ex 求Dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:11:07
x 服从n(0,1),y=ex 求Dy
根据EX求EY已知X-U(0,1),随机变量X服从均匀分布,随机变量Y=X的平方.EX=1/2,即X的期望值1/2,求E

EX^2-(EX)^2=DX知道这个公式不?知道就会了吧...EY=EX^2=DX+(EX)^2=1+0=1

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)].

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

已知随机变量X,Y相互独立,且同服从分布N(0,1),又Z=根号(X^2+Y^2),求E(X),D(X)

E(Z)=E(X^2+Y^2)=E(X^2)+E(Y^2)=[DX+(EX)^2]+[DX+(EX)^2]=1+0+1+0=2因为DX=E(X^2)-(EX)^2D(Z)=D(X^2+Y^2)=D(X

已知随机变量X,Y分别服从N(1,9),N(0,16),它们的相关系数ρxy,=-1/2,Z=X/3+Y/2,试求:

因为书上定义:D(ax+by)=a^2D(X)+b^2D(Y)+2*abCov(X,Y)Cov(X,Y)为协方差Cov(X,Y)=E(XY)-E(X)E(Y)只有当X,Y不相关时Cov(X,Y)等于零

X,Y相互独立.他们都服从标准正态分布N(0,1).证明Z=X^2+Y^2服从λ=1/2的指数分布

有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释

二维随机变量X,Y服从(0,1)均匀分布,求Z=MAX(X,Y)

F(X)=(X-0)/(1-0)=x/1=xF(Y)=(Y-0)/(1-0)=y/1=y以上是两个均匀分布的分布函数F(Z)=F(MAX(X,Y))=1-(1-F(X))(1-F(Y))=1-(1-X

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

X与Y独立,且X服从(0,1)上的均匀分布,Y服从参数为1 的指数分布,求Z=X+Y的概率密度?

有卷积公式啊,fz(z)=[fx(Z-Y)fy(y)dy其中[表示积分号,积分区域是整个定义域对于这个题,代入上式fz(z)=[1*e的-y次方dy积分区域是0到1,积分出来等于1,在其他范围内是0,

X与Y独立,且X服从(0,1)上的均匀分布,Y服从参数为1 的指数分布,求P{X=min(X,Y)}

令Z=min(X,Y),则:P{Z=min(X,Y)>z}=P{X>z,Y>z}=P{X>z}*P{Y>z}易知:P{X>z}=1-z(0==0)所以:P{Z=min(X,Y)>z}=[1-z]*[1

设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0)

X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

根号(2*pi)积分可以化成极坐标做.

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)]

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

已知随即变量X服从二项分布,EX=12、DX=8,求p和n.

变量X服从二项分布(p,n)E(x)=npD(x)=np(1-p)np=12np(1-p)=8解得p=1/3n=36

随即变量X服从N(0,1)分布,Y=X^2,求x和y的相关系数

p=cov(x,y)/[√D(x)*√D(y)]cov(x,y)=E(x*y)-E(x)*E(y)=E(x^3)-E(x)*E(x^2)=E(x^3)=∫∞(x³*e^(-x²/2

二维随机变量(x,y)~N(0,0,1,1,1/2) 则z=x-2y服从?

根据二维正态分布的性质知:x,y均服从N(0,1),根据正态分布的线性组合还是正态分布,知z服从正态分布下面重点求z的期望与方差E(z)=E(x-2y)=E(x)-2E(y)=0D(z)=D(x-2y