x 服从n(0,1),y=ex 求Dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:11:07
EX^2-(EX)^2=DX知道这个公式不?知道就会了吧...EY=EX^2=DX+(EX)^2=1+0=1
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
E(Z)=E(X^2+Y^2)=E(X^2)+E(Y^2)=[DX+(EX)^2]+[DX+(EX)^2]=1+0+1+0=2因为DX=E(X^2)-(EX)^2D(Z)=D(X^2+Y^2)=D(X
因为书上定义:D(ax+by)=a^2D(X)+b^2D(Y)+2*abCov(X,Y)Cov(X,Y)为协方差Cov(X,Y)=E(XY)-E(X)E(Y)只有当X,Y不相关时Cov(X,Y)等于零
有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释
F(X)=(X-0)/(1-0)=x/1=xF(Y)=(Y-0)/(1-0)=y/1=y以上是两个均匀分布的分布函数F(Z)=F(MAX(X,Y))=1-(1-F(X))(1-F(Y))=1-(1-X
说明x的期望是5,也就是指数分布的参数是5
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
有卷积公式啊,fz(z)=[fx(Z-Y)fy(y)dy其中[表示积分号,积分区域是整个定义域对于这个题,代入上式fz(z)=[1*e的-y次方dy积分区域是0到1,积分出来等于1,在其他范围内是0,
令Z=min(X,Y),则:P{Z=min(X,Y)>z}=P{X>z,Y>z}=P{X>z}*P{Y>z}易知:P{X>z}=1-z(0==0)所以:P{Z=min(X,Y)>z}=[1-z]*[1
X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
根号(2*pi)积分可以化成极坐标做.
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)
E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)
变量X服从二项分布(p,n)E(x)=npD(x)=np(1-p)np=12np(1-p)=8解得p=1/3n=36
p=cov(x,y)/[√D(x)*√D(y)]cov(x,y)=E(x*y)-E(x)*E(y)=E(x^3)-E(x)*E(x^2)=E(x^3)=∫∞(x³*e^(-x²/2
根据二维正态分布的性质知:x,y均服从N(0,1),根据正态分布的线性组合还是正态分布,知z服从正态分布下面重点求z的期望与方差E(z)=E(x-2y)=E(x)-2E(y)=0D(z)=D(x-2y