x,y服从几何分布,x y服从什么分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:21:23
x,y服从几何分布,x y服从什么分布
二维随机变量xy服从(μ,μ,σ,σ,0)分布,求E[x(y^2)]

p=0,所以x,y独立,Exy^2=ExEy^2,Ex=u,Ey^2=u^2+σ^2,所以Exy^2=u^3+uσ^2

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X服从(1,2)上的均匀分布,在X=x条件下,随机变量Y的条件分布是参数为x的指数分布.证明:XY服从参数为1

f(x)=1,1≤x≤2f(y|x)=xe^(-xy),y≥0f(y|x)=f(x,y)/f(x)=f(x,y)=xe^(-xy)令z=xy,z≥0F(z)=P(Z≤z)=P(XY≤z)=∫(1,2)

如果二独立随机变量X和Y之和X+Y与X和Y服从同一名称的概率分布,则X和Y都服从()

(1)若X~P(),P(),则X+Y~P()证明:利用卷积公式来证明设Z=X+Y则P(Z=m)=P(X+Y=m)=(卷积公式)=(因为X与Y独立时,联合分布=边际分布之积)=(此处忘记写上下标了)==

X服从正态分布,X的平方服从什么分布

X服从正态分布,则X的平方服从卡方分布.

设随机变量x服从参数为p的几何分布,M>0为整数,Y=max(X,M),求E(Y)

用随机变量函数的期望公式.请采纳,谢谢!

已知随机变量X与Y均服从0-1分布B(1,3/4),如果E(XY)=5/8,则P{X+Y

可如图写出期望计算式,其中只有一项不为0.经济数学团队帮你解答,请及时采纳.谢谢!

3. 若随机变量 X 服从B(8,0.25),则Y= 8—X 服从分布_________________.

Y=8—X服从分布B(0,0.25).再问:这是为了什么呢。能说下原因道理吗?~谢谢~~!再答:X服从B(μ,σ²),其中的μ就是期望Eξ,σ²就是方差Dξ,它们分别有性质:E(a

设X和Y为独立随机变量,同服从参数为p的几何分布,计算已知X+Y 的条件下,X的条件概率.

P(X=x|X+Y=z)=P(X=x,Y=z-x)/P(X+Y=z)=(1-p)^(x-1)p(1-p)^(z-x-1)p/P(X+Y=z)再问:没有错,但是没有写完啊……P(X+Y=z)=?(考虑卷

(X,Y) 服从二元正态分布 (x平方,y平方)服从什么分布

XY服从差方分布~你说的那个只能用二维分布率公式自己推了

概率论!设随机变量X与Y服从同一分布,其分布律为X(Y)~

再问:能不能具体解释一下再答:再问:第二行和第三行我不是很懂?为什么是1/4?再答:P(X=0,Y=-1)+P(X=-1,Y=-1)+P(X=1,Y=-1)=P(Y=-1)=1/4但是P(X=-1,Y

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

设X~N(1,2),Y服从参数为3的泊松分布,且X与Y独立,求D(XY)

X~N(1,2)则E(X)=1,Y服从参数为3的泊松分布,则E(Y)=3;E(Y^2)=3^2+3=12;E(X^2)=1;D(xy)=E[(xy)^2]-E^2(xy)=E(x^2y^2)-E^2(