x,y相互独立且服从泊松分布,z=min{x,y}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:11:36
x,y相互独立且服从泊松分布,z=min{x,y}
设两个随机变量X和Y相互独立且分别服从参数为a1,a2的泊松分布,则X+Y服从参数为什么的泊松分布?

X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料

19.设随机变量X~B,Y服从参数为3的泊松分布,且X与Y相互独立,则 D(X+Y)=______.

X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量X与Y相互独立,且X~B(16,1/2),Y服从于参数为9的泊松分布,则D(X-2Y+1)=________.

EX=16*(1/2)=8,DX=16*(1/2)*(1-1/2)=4EY=9,DY=9D(X-2Y+1)=D(X-2Y)=DX+D2Y=DX+4DY=4+4*9=40

设随机变量X,Y相互独立,且都服从两点分布B 则P(X=Y)=

P(X=Y)=P(X=0)P(Y=0)+P(X=1)P(Y=1)=1/9+4/9=5/9如有意见,欢迎讨论,共同学习;如有帮助,再问:为什么这么算啊?再答:根据独立性。书上讲更全面一些,建议您看书。

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+3)=?

随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+

设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2))

根号(2*pi)积分可以化成极坐标做.

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

随机变量x,y相互独立且服从同一分布,若其数学期望相同,方差是不是不一定相同

如果方差不存在怎么办?同一分布是指同一个分布,不是同一类分布

随机变量X,Y相互独立,分别服从参数为a,b的泊松分布,证明X+Y服从参数为a+b的泊松分布.

π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m