x2 (y-1)2ds

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:34:38
x2 (y-1)2ds
∮(x^2+2y+1)ds x^2+y^2+z^2=a^2 x+y+z=0 曲线积分

注意到积分曲线关于x,y,z是轮换对称的,因此有∮x²ds=∮y²ds=∮z²ds=(1/3)∮(x²+y²+z²)ds=(1/3)∮a&#

计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2

为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部

设L为椭圆x^2/3+y^2/4=1,其周长为a,求∮(2xy+4x^2+3y^2)ds.

拆两部分,2xy为其中一部分,因其是以x为自变量的奇函数,而积分区域又是关于x对称的,所以这部分的积分为0.另一部分其实就是12啦(椭圆方程化一下就晓得了)即关于12求第一类曲线积分,结果为12aLZ

因为x2+y2=2y化为x2+(y-1)2

因为x2+y2=2y化为x2+(y-1)2=1,令x=sinθ,y=1+cosθ,所以2x+y=2sinθ+cosθ+1=5sin(θ+β)+1,其中tanβ=55.因为sin(θ+β)∈[-1,1]

设S:(x-a)^2+(y-b)^2+(z-c)^2 =1,则∫∫(x+y+z)dS= ( )

这个题考查的是第一类曲面积分的质心公式的使用质心公式在重积分和线面积分中都有其类似的形式要注意不要误用高斯公式,高斯公式用于第二类曲面积分中质心公式和此题的解答请参见下图

曲面积分 (x^2+y^2)dS 积分区域是z=x^2+y^2以及平面z=1围成

∫∫Σ(x²+y²)dS=∫∫Σ1(x²+y²)dS+∫∫Σ2(x²+y²)dS=∫∫D(x²+y²)√(1+4x

(X2 -y+1)(X2+1)+X2y+y -X2因式分解

(X^2-y+1)(X^2+1)+X^2y+y-X^2=(X^2-y+1)(X^2+1)+(X^2+1)y-X^2=(X^2-y+y+1)(X^2+1)-X^2=(X^2+1)^2-x^2=(x^2+

第一型曲线积分一题曲线c上积分:x平方ds,其中c为{球x2+y2+z2=a2{x+y+z=0

用轮换性x2ds=1/3(x2+y2+z2)ds=2πa3/32πa三次方/3

第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0

因为所给曲线为关于x轴对称的半圆吧?我们可以用对称性,直接研究第一象限中的曲线部分吧?再乘以2不完了吗?因此绝对值可以去掉了吧?用极坐标代换简单的……分别计算简单,没有什么捷径可走的,分成两个曲线计算

计算曲线积分(x^2+y)ds,其中L是以O(0,0),A(1,0),B(0,1)为顶点三角形边界

再问:L2为什么是0再答:先是我的答案对吗?再问:不是再答:那还说再问:相差L2那个长度再答:我知道了再问:恩说下再答:答案是2/3吗?再问:不是你上面漏了一个根号2的再问:我会做了,那一段看做y是变

函数y=x2-2/x2+1的值域为

拥有界性法y大于等于-2小于1

求y=ln[x2(x2+1)]/(x2+2)的导数

y'=[(4x^3+2x)(x^2+2)/(x^4+x^2)-2xln(x^4+x^2)]/[x^2+2]^2=[(4x^3+2x)(x^2+2)-2x^3(x^2+1)ln(x^4+x^2)]/[(

(1+y)ds对x^2+y^2=a^2的有向曲线积分

L为x²+y²=a²采用参数方程:x=acost,y=asint,ds=adt∮L(1+y)ds=∫(0→2π)(1+asint)*adt=a*(t-acost):(0→

计算∫∫(z+2x+4\3y)ds,其中∑为平面x\2+y\3+z\4=1在第一卦限中的部分.

平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的

已知2y+x2

原式=(4x2-y2+x2+2xy+y2-4x2+2xy)÷(-4x)=(x2+4xy)÷(-4x)=-14x-y,∵2y+x2=10,∴y=5-x4,则原式=-14x-5+14x=-5.

设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=

∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y&#

设l是从a(1,0)到b(-1,2)的线段,则曲线积分∫L(x+y)ds

直线AB的方程为y=1-x也即x+y=1故∫L(x+y)ds=∫L1ds=∫Lds=|AB|=√[(-1-1)^2+(2-0)^2]=2√2

求设L是从A(1,0)到(1,2)的线段,曲线积分∫(x+y)ds=?

你确定题目没有问题?再问:再答:我就说嘛,选B,L上,x+y=1,所以,转化为1的积分,于是,直接求线段长度即可。再问:老师再问一个问题再问:老师是应用题的第二题谢谢再问:

求曲线积分I=∫L(e^(x^2+y^2)^(1/2)) ds,其中L为圆周x^2+y^2=R^2

I=∫L(e^(x^2+y^2)^(1/2))ds=∫Le^(R)ds=e^R∫Lds=e^R·2πR=2πRe^R