x=a()t-sint,y=a(1-cost)是什么函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:11:13
x作为自变量,同时又是另外一个函数的因变量,y是x的因变量,也是关于t的一个函数的应变量.相当于把y=f(x),分开,自变量和因变量都用另一个函数表示.这时候,x不再是定义域内的一切实数了,而是满足某
4a[1-cos(t/2)]=8a[sin(t/4)]^21-cost=2[sin(t/2)]^2sint=2sin(t/2)cos(t/2)tan(t/2)=(1-cost)/sintcot(t/2
1、t是参数、参量、参变量;2、任何常数,无论多少次复合,只要不与变量复合,都是常数.如,a是常数,lna,ln(3a+2),a²,a³,a⁴,.都仍是常数,导数都是0
利用参数方程求面积的公式解定积分 过程如下图:
dx/dt=a(1-cost)dy/dt=asinty'=dy/dx=(dy/dt)/(dx/dt)=sint/(1-cost)dy'/dt=[cost(1-cost)-sint(sint)]/(1-
由对称性,S=4∫(0→a)ydx=4∫(π/2→0)a(sint)^3d[a(cost)^3]=12a^2×∫(0→π/2)(sint)^4×(cost)^2dt=12a^2×∫(0→π/2)[(s
首先求导数y'=1/(2根号x)所以切线斜率为1/2根号4=1/4故法线斜率为-4所以切线方程为y-2=1/4(x-4)法线方程为:y-2=-4(x-4)你自己在化简一下就行了
直接用公式吧:这是参数方程先各自求个导:x'(t)=a(1-cost)y'(t)=asintL=积分:(0,2*pi)[x'^2(t)+y'^2(t)]^(1/2)dt=积分:(0,2pi)(2a^2
在极坐标系中平面螺旋线方程为r=a*t+k,t为M点参数,表示OM与X轴夹角,a、k为常数.联系到平面直角坐标系,我们有r^2=x^2+y^2通过x=a(t-sint)y=a(1-cost)这组关系,
推荐用matlab做.哈哈
x=a(cost+tsint),y=a(sint-tcost)L=∫√(dx²+dy²)dx=atcostdtdy=atsintdt=∫at√((cos²t+sin&su
1、0=-sin^2t+sint+a0=-(sin²t-sint+1/4-1/4-a)0=-[(sint-1/2)²-(1+4a)/4]0=-(sint-1/2)²+(1
解析x=acost+atsinty=asint-atcostdx=-asint+asint+atcostdy=acost-acost+atsint∴dy/dx=(acost-acost+asint)/
1.x=4+3ty=2+t3y=6+3t相减x-3y=-2x-3y+2=02.x=cos^2ty=sint平方,相加x+y^2=13.x=a/costcost=a/xy=b*tanty*coxt=b*
a∫1/sintdt=a∫1/(2sin(t/2)cos(t/2))dt【倍角公式】=∫1/(tan(t/2)[cos(t/2)]^2)d(t/2)【凑微分法】=∫1/(tan(t/2))d(tan(
sint=t-x/acost=1-y/asint^2+cost^2=1所以(at-x)^2+(a-y)^2=a^2
∵x=a(t-sint)∴dx=d[a(t-sint)]=(a-cost)dt∴y=a(1-cost)∴dy=d[a(1-cost)]=asintdt∴dy/dx=(asint)/(a-cost)再问
显然dx/dt=a(1-cost)dy/dt=a*sint那么dy/dx=sint/(1-cost)继续求二阶导就得到d(dy/dx)/dt*dt/dx=[(sint)'*(1-cost)-sint*