x=asect,求t=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:32:38
f(x)=xsinx-x∫[0→x]f(t)dt+∫[0→x]tf(t)dtf(0)=0f'(x)=sinx+xcosx-∫[0→x]f(t)dt-xf(x)+xf(x)=sinx+xcosx-∫[0
φ(x)=∫(0~2x)t(e^t)dt=[te^t-e^t+C](0~2x)=2xe^(2x)-e^(2x)+1φ'(x)=[2xe^(2x)-e^(2x)+1]'=2e^(2x)+2x*2*e^(
对f(X)求导得f`(x)=2x-2分段,t>1或t=1时f`(x)>=0为增函数,所以最小值为t^2-2t+2当x
A^2=(I-X(X^TX)^-1X^T)(I-X(X^TX)^-1X^T)=I-2X(X^TX)^-1X^T+[X(X^TX)^-1X^T][X(X^TX)^-1X^T]=I-2X(X^TX)^-1
y=ln(1+t)t=e^y-1x=e^(2y)-e^y两边同时对x求导得dy/dx=1/(2e^(2y)-e^y)=1/(2(1+t)^2-1+t)=1/(2t^2+3t+1)
=(1+e^t)/(2-sint)不通,看书.
x轴和y轴方向上的位移都是时间t的二次函数,故加速度恒定不变,在任意时刻,切向和法向加速度皆为2.
这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y
dy/dx=(dy/dt)/(dx/dt)dy/dt=-4t^3dx/dt=e^t+(t-1)e^t=te^t所以dy/dx=-4t^2/e^t
f(t)=limt*[(x+t)/(x-t)]^x=limt*[1+2t/(x-t)]^[(x-t)/2t*2tx/(x-t)]=limt*e^[2tx/(x-t)]=t*e^(2t)f'(t)=e^
将函数求导得:f'(x)=2tx+2t^2最小值时,f'(x)=0,所以解得x=-t,将x=-t代入函数,可求出值
F(x)=tx^2+2t^2x+t-1=t(x^2+2tx+t^2)-t^3+t-1=t(x+t)^2-t^3+t-1因为t>0所以当x=-t时f(x)最小值h(t)=-t^3+t-1h(t)=-t^
lim是什么意思
f(x)=sinx-∫(0~x)(x-t)f(t)dt=sinx-x∫(0~x)f(t)dt+∫(0~x)tf(t)dt,之后两边对x求导f'(x)=cosx-[x'·∫(0~x)f(t)dt+x·f
由x的范围决定,x范围(0,a),sect范围(0,1),t范围(0.π/2)
y=tf'(t)-f(t)首先这个式子在求导的时候是对t求导,你要搞清楚那么y`就是对tf'(t)求导和对-f(t)求导tf'(t)求导就是相当于(uv)的导数,其中u为t,v为f'(t)(uv)`=
(1)当t≤1时,值域为:[f(t),f(t﹣1)](2)当1<t<3/2时,值域为:[0,f(t﹣1)﹚(3)当t=3/2时,值域为:[0,f(t)](或[0,f(t﹣1)](4)当3/2<t<2时
1可以令x=sect,3不可以,令x=sint再问:第一题算出来了,第二题还是不会再答:在路上,回家写给你看再答:再答:不同积分方法得到的结果可能会不同
dx\dy中间是“反除号”即dy/dx=2t若dx/dy=(2t)^(-1)再问:如果不是反除号呢?再答:dx/dy=(2t)^(-1)
对f(x)求导:f'(x)=lnx+1令f'(x)=0可解得x=1/e可见,f'(x)在区间(0,1/e]小于0;在区间[1/e,+∞]大于0所以,f(x)在区间(0,1/e]上单调递减,在区间[1/