x=t-sint;y=1-cost;与y=0围城的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:22:08
x=t-sint;y=1-cost;与y=0围城的面积
如果 x=根号(1-t平方),y=1/sint, 求 dy/dx=

dy/dt=-1/sin²t·costdx/dt=-2t/(2√1-t²)=-t/√1-t²dy/dx=√1-t²·cost/(t·sin²t)再问:

已知x=exp(t)sint ,y=exp(t)cost,证明下列方程

证一:为了方便,记x`=dx/dt,y`=dy/dt.则d²y/dx²=d(dy/dx)/dx=d(y`/x`)/dx=[d(y`/x`)/dt]/(dx/dt)=(y`/x`)`

x=(e^t)sint y=(e^t)cost 求d^2y/dx^2

dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d

x=a(t-sint),y=a(1-cost),请构造关于x,y的二元函数f(x,y),使得f(x,y)

4a[1-cos(t/2)]=8a[sin(t/4)]^21-cost=2[sin(t/2)]^2sint=2sin(t/2)cos(t/2)tan(t/2)=(1-cost)/sintcot(t/2

设x=1+t^2、y=cost 求 dy/dx 和d^2y/dx^2 sint-tcost/4t^3 和 sint-tc

∵x=1+t²,y=cost==>dx/dt=2t,dy/dt=-sint∴d²y/dx²=d(dy/dx)/dx=(d((dy/dt)/(dx/dt))/dt)/(dx

曲线方程 x=t+1+sint y=t+cost 求曲线在x=1处的切线方程 (要过程 谢谢)

因为dx/dt=1+costdy/dt=1-sint所以dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)又x'(t)=1+cost>=0,x(t)单调不减于是得x=t+1

求摆线的参数方程x=a(t-sint) 和 y=a(1-cost)所确定的函数y=y(x)的

dx/dt=a(1-cost)dy/dt=asinty'=dy/dx=(dy/dt)/(dx/dt)=sint/(1-cost)dy'/dt=[cost(1-cost)-sint(sint)]/(1-

把曲线的参数方程化为一般方程:x=3sint,y=4sint,z=5cost (0小于等于t小于2pai)

x^2=9sin^ty^2=16sin^tz^2=25cos^t三式相加可得一般方程x^2+y^2+z^2=25

x(t)=t-sint y(t)=1-cost,想建立x与y的方程,

t=arccos(1-y)x=arccos(1-y)-sin[arccos(1-y)]【sin(arccosx)=√(1-x²)】=arccos(1-y)-√[1-(1-y)²]=

旋轮线 公式旋轮线 x=a(t-sint) y=a(1-cost)是如何推导出来的?

在极坐标系中平面螺旋线方程为r=a*t+k,t为M点参数,表示OM与X轴夹角,a、k为常数.联系到平面直角坐标系,我们有r^2=x^2+y^2通过x=a(t-sint)y=a(1-cost)这组关系,

MATLAB中,t=0:.1:2*pi; y=sint(t); plot(t,y)

书上的图是自动调整了坐标间距的,那个间距不是你说的步距.步距是画图是图上每一个点之间的横坐标的间距,它是0.1.纵坐标的各点间间距是不一样的.图上坐标间距横坐标是1,纵坐标是0.2,这是由你横纵坐标的

参数方程x=cost+sint,y=sint*cost*(t为参数)的普通方程是多少

需要注意的是有个隐藏条件:(sint)^2+(cost)^2=1即(sint+cost)^2-2sint*cost=1将x=cost+sint,y=sint*cost代入得x^2-2y=1,即y=(x

设x=t^2+cost,y=1-sint,求dy/dx

解dy/dx=(1-sint)'/(t²+cost)'=(-cost)/(2t-sint)

已知﹛x=7(t-sint),y=7(1-cost),则dy/dx=

dx=(7-7cost)dtdy=(7sint)dtdy/dx=(7sint)/(7-7cost)再问:有两个答案耶,哪个是对的呀再答:我的应该是对的,当然公因子7可以约掉

Z=e(x-2y) X=sint Y等于T的平方 求dz/dt

z=e^(x-2y)dz=e^(x-2y)(dx-2dy)(1)x=sintdx=costdt(2)y=t^2dy=2tdt(3)将(2),(3)代入(1)得dz=e^(x-2y)(cost-4t)d

已知参数方程比如x=a(t-sint),y=a(1-cost) 如何转换成一般式呢?

sint=t-x/acost=1-y/asint^2+cost^2=1所以(at-x)^2+(a-y)^2=a^2

x=2t^2 +1 y= sint 求dy/dx是多少?

dy/dt=costdx/dt=4tdy/dx=cost/4t

.高数题 已知函数z=(1/3)ln(x-y),x=sect,y=3 sint 求(dz/dt) | t=π

z=(1/3)ln(sect-3sint)dz/dt=(1/3)(secttant-3cost)/(sect-3sint)t=πdz/dt=(1/3)(3)/(1)=1

参数方程求导 x=a(t-sint) y=a(1-cost) 求dy/dx 各种不会 求解决

∵x=a(t-sint)∴dx=d[a(t-sint)]=(a-cost)dt∴y=a(1-cost)∴dy=d[a(1-cost)]=asintdt∴dy/dx=(asint)/(a-cost)再问