x=t-sint;y=1-cost;与y=0围城的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:22:08
dy/dt=-1/sin²t·costdx/dt=-2t/(2√1-t²)=-t/√1-t²dy/dx=√1-t²·cost/(t·sin²t)再问:
证一:为了方便,记x`=dx/dt,y`=dy/dt.则d²y/dx²=d(dy/dx)/dx=d(y`/x`)/dx=[d(y`/x`)/dt]/(dx/dt)=(y`/x`)`
dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d
4a[1-cos(t/2)]=8a[sin(t/4)]^21-cost=2[sin(t/2)]^2sint=2sin(t/2)cos(t/2)tan(t/2)=(1-cost)/sintcot(t/2
∵x=1+t²,y=cost==>dx/dt=2t,dy/dt=-sint∴d²y/dx²=d(dy/dx)/dx=(d((dy/dt)/(dx/dt))/dt)/(dx
因为dx/dt=1+costdy/dt=1-sint所以dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)又x'(t)=1+cost>=0,x(t)单调不减于是得x=t+1
dx/dt=a(1-cost)dy/dt=asinty'=dy/dx=(dy/dt)/(dx/dt)=sint/(1-cost)dy'/dt=[cost(1-cost)-sint(sint)]/(1-
x^2=9sin^ty^2=16sin^tz^2=25cos^t三式相加可得一般方程x^2+y^2+z^2=25
t=arccos(1-y)x=arccos(1-y)-sin[arccos(1-y)]【sin(arccosx)=√(1-x²)】=arccos(1-y)-√[1-(1-y)²]=
在极坐标系中平面螺旋线方程为r=a*t+k,t为M点参数,表示OM与X轴夹角,a、k为常数.联系到平面直角坐标系,我们有r^2=x^2+y^2通过x=a(t-sint)y=a(1-cost)这组关系,
书上的图是自动调整了坐标间距的,那个间距不是你说的步距.步距是画图是图上每一个点之间的横坐标的间距,它是0.1.纵坐标的各点间间距是不一样的.图上坐标间距横坐标是1,纵坐标是0.2,这是由你横纵坐标的
需要注意的是有个隐藏条件:(sint)^2+(cost)^2=1即(sint+cost)^2-2sint*cost=1将x=cost+sint,y=sint*cost代入得x^2-2y=1,即y=(x
解dy/dx=(1-sint)'/(t²+cost)'=(-cost)/(2t-sint)
dx=(7-7cost)dtdy=(7sint)dtdy/dx=(7sint)/(7-7cost)再问:有两个答案耶,哪个是对的呀再答:我的应该是对的,当然公因子7可以约掉
z=e^(x-2y)dz=e^(x-2y)(dx-2dy)(1)x=sintdx=costdt(2)y=t^2dy=2tdt(3)将(2),(3)代入(1)得dz=e^(x-2y)(cost-4t)d
sint=t-x/acost=1-y/asint^2+cost^2=1所以(at-x)^2+(a-y)^2=a^2
dy/dt=costdx/dt=4tdy/dx=cost/4t
z=(1/3)ln(sect-3sint)dz/dt=(1/3)(secttant-3cost)/(sect-3sint)t=πdz/dt=(1/3)(3)/(1)=1
∵x=a(t-sint)∴dx=d[a(t-sint)]=(a-cost)dt∴y=a(1-cost)∴dy=d[a(1-cost)]=asintdt∴dy/dx=(asint)/(a-cost)再问