x^2n (2n 1)的收敛域以及和函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:24:01
x^2n (2n 1)的收敛域以及和函数
求级数∑(2n-1)x^(n-1)的收敛区间及和函数

收敛半径是单位圆,如果需要过程再联系我再问:给个过程阿再答:

求幂级数 ∑(∞,n→0)(2n+1)x^n的收敛域及和函数.

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求幂级数的和函数,求幂级数∑(上是无穷大,下是n=1){[(-2)^n+3^n]/n}*(x-1)^n的收敛域,

本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造

求幂级数∑(x-1)∧n/(n×2∧n)的收敛域

求幂级数Σ[(x-1)^n]/(n*2^n)的收敛域.  利用比值判别法,当   lim(n→∞)|u[n+1](x)/u[n](x)|  =lim(n→∞)|{[(x-1)^(n+1)]/[(n+1

如何证明级数n^n/(n!)^2是收敛的

只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^

求级数∑(n+1)(n+2)x^n的收敛区间,并求和函数

令An=(n+1)(n+2)由比值审敛法:p=lim(n->无穷)An/An+1=1=>收敛半径R=1/p=1=>收敛域:(-1,1)下面来讨论x=-1和1处的敛散性:1.当x=1时,原级数E(n+1

求级数的收敛半径∑((1/2∧n)+3∧n)×x∧n

再问:错的,答案是三分之一再答:

n1=2,n2=++n1,n1=n2++ 执行后n1,n2的值

n2=++n1先作n1=++n1,此时n1=n1+1=2+1=3,再作n2=n1=3n1=n2++先作n1=n2=3,再作n2=n2++=n2+1=3+1=4执行后n1=3,n2=4

求级数 ∑(x-3)^n / n-n^3 的收敛半径和收敛域!

令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,

求级数的收敛域∞ (2x+1)^n∑ __________n=1 3n-1

令t=2x+1,∞t^n原式化为∑__________n=13n-1a3n+13n-1因为ρ=lim|__n+1_______|=lim__________=lim__________=1n→∞an→

求幂级数∑(n^2+1)*x^n/(n!*2^n)的收敛范围,并求其和函数

﹙﹣∞,﹢∞﹚[e^﹙x/2﹚]﹙1+x/2+x²/4﹚再问:n从1开始,是不是要减1

matlab迭代计算X(n+1)=3/(X(n)+2),给出可能的收敛值,并给出不同收敛值对应的初值范围

x=-100:100;%x的初值范围y=zeros(201,1);t=100;%迭代次数forn=1:201te=x(n);form=1:ty(n)=3/(te+2);te=y(n);endend再问

求级数∑(2n+1)x^n在其收敛区间内的和函数

∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(

求幂级数∑【n=0 to 无穷】(x^n)/{n[3^n+(-2)^n]}的收敛域 答案是[-3,3),

首先确定收敛半径,这个直接用书上的公式,两项相除求极限就可以了,极限是3,所以收敛半径R=3现在再来看端点处的熟练情况,x=3的时候就掠过啦,现在来说x=-3的情况,这是交错级数,一般的书上只给了一个

求幂级数∑ 【n=1到无穷】】(-1)^(n-1 )* (2x)^n 的收敛域 求步骤

先求收敛半径.lim(n→∞)|(-1)^n*2^(n+1)/((-1)^(n-1)*2^n)|=2,所以收敛半径R=1/2.当x=1/2时,幂级数为∑(-1)^(n-1),是发散的;当x=-1/2时

求级数∑(2n+1)/(2^n) * x^2的收敛域,请给出关键步骤,

答:设y=x^2limn->∞|a(n+1)/a(n)|=1/2所以R=√2.x=±√2时原级数发散,所以收敛域是(-√2,√2)

求级数∑∞n=1(1/2n)(x^n^2)的收敛域

级数为   ∑{n>=1}[x^(n^2)]/(2n),由于   lim(n→inf.)|{x^[(n+1)^2]}/(2n+2)|/|[x^(n^2)]/(2n)|  =lim(n→inf.)|x^

求级数(4n^2+4n+2)x^2n/(2n+1)的收敛域与和函数

分成2个级数:(4n^2+4n+2)x^2n/(2n+1)=(2n+1)x^2n+x^2n/(2n+1)级数(2n+1)x^2n的收敛域(-1,1)级数x^2n/(2n+1)的也是收敛域(-1,1)故