X~P(4),Y~E(1 4),cov(X,Y)=0.5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:55:01
X~P(4),Y~E(1 4),cov(X,Y)=0.5
已知点P在曲线y=4根号3/e^x+1上

解题思路:由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,结合函数的值域的求法利用基本不等式求出k的范围,再根据k=tanα,结合正切函数的图象求出角α的范围.解题过程:见附件

1.y=e^(4xsin2x) 求导 2.x^3(x+y)=y^2(2x-y)求导 3.e^(x/y)=2x-y求导

解1)答案e^(4xsin2x)*(4sin2x+8xcos2x)2)答案[(4lny)-(3lnx)-3-(y/x)]/[(3lnx)-(4x/y)+(2lny)+2]3)答案(3y^2-2xy)/

设随机变量X~e(2) e(4),求E(X+Y),E(2X-3Y^2)

e(2)e(4)E(X)=1/2,E(Y)=1/4D(X)=1/4,D(Y)=1/16E(X+Y)=E(X)+E(Y)=3/4D(Y)=E(Y^2)-(E(Y))^2E(Y^2)=D(Y)+(E(Y)

求导 x*e^y*y'

设u=x×e^y×y'du/dx=y'e^y+x(y')²e^y+xy''e^y

已知点P在曲线y=4e

∵y=4ex+1,∴y′=−4ex(ex+1)2=−4ex+1ex+2,∴-1≤y′<0,∴tanα的取值范围是[-1,0).故答案为:[-1,0).

已知点P是曲线y=e^x+x上任意一点,求P到直线y=2x-4的最小距离

答:设点P为(p,e^p+p),到直线y=2x-4的距离L为:L=|2p-e^p-p-4|/√5=|e^p-p+4|/√5令g(p)=e^p-p+4g'(p)=e^p-11)当p0,g(p)为增函数,

设y=e^x是微分方程xy'+p(x)y=x的一个解,则p(x)=

∵y=e^x是微分方程xy'+p(x)y=x的一个解==>xe^x+p(x)e^x=x==>p(x)e^x=x-xe^x∴p(x)=xe^(-x)-x.

已知随机变量X与Y均服从0-1分布B(1,3/4),如果E(XY)=5/8,则P{X+Y

可如图写出期望计算式,其中只有一项不为0.经济数学团队帮你解答,请及时采纳.谢谢!

统计学证明E(X-Y)=E(X)-E(Y)

这是一个二维的随机变量,不知道是连续或是离散的不妨设为离散的,(对于连续的只要把求和符号换成积分符号就行啦!)设(X,Y)的联合分布列和边际分布列为:P(X=ai,Y=bj)=pij,i,j=1,2,

设随机变量(X,Y)的联合密度为f(x,y)=12e^(-3x-4y) x>0 y>0 f(x,y)=0 其他 求p{3

即求积分dx[积分f(x,y)dy]=积分dx[积分12e^(-3x-4y)dy]t=3x+4ydt=4dy3x再问:没错,但是我不明白为什么积分区域是<0,1>再答:因为只有x,y>0f(x,y)才

如图所示,已知平面直角坐标系xOy,A(4,0),点P(m,n)在第四象限,点P关于直线x=2的对称点为点E,点E关于y

(1)E(m-4,n);F(4-m,n);(2)因为A(4,0)所以OA=4做FM垂直y轴于M所以OA//PE,即OA//PF因为F(4-m,n)、P(m,n),所以OM=4-m、PM=m所以FP=m

已知点P是函数y=e^x图像上的动点,当P到直线y=x距离最近时点P的坐标为

【分析】p到y=x距离最近时,p处的切线与y=x平行【解】设P(x0,y0)y'=e^x当x=x0时.k=y’=1即e^x0=1x0=0y0=1∴p(0,1)

设X,Y,Z是三个随机变量,已知E(X)=E(Y)=1,E(Z)=-1;D(X)=D(Y)=D(Z)=2;P(X,Y)=

ρ(x,y)=cov(x,y)/(√D(x)√D(y))=[E(X,Y)-E(X)E(Y)]/2=0cov(x,y)=0同理cov(x,z)=1cov(y,z)=-1E(W)=E(X)+E(Y)+E(

协方差的计算cov (X,Y)=∑∑xyP(X,Y)-E(X)E(Y)=∑∑{[X-E(X)][Y-E(Y)]}P(X,

当x=1时p1=0.5当x=2时p2=0.5当y=0时p0=0.45当y=1时p1=0.55∑∑xyP(X,Y)=0*1*0.2+1*1*0.3+0*2*0.25+1*2*0.25=0.8E(X)=1

设随机变量X~e(2) Y~e(4),求E(X+Y),E(2X-3Y^2)

e(2)e(4)∴E(X)=1/2E(Y)=1/4D(X)=1/4D(Y)=1/16E(X+Y)=E(X)+EY=3/4E(2X-3Y²)=2E(X)-3E(Y²)D(Y)+(EY

1.已知y1=3,y2=3+x²,y3=3+x²+e^x都是微分方程y"+p(x)y'+q(x)y=

1.y=C1e^x+C22x^+C32.(-2,0,3)33.1/(3倍根号下2)4.